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Abstract:

Action recognition is the process of identifying actions performed by one or more actor/s

in a given context based on some observations. Actions come in all shapes and sizes, be

it a simple action occurring over a couple of seconds, such as raising your arms, to more

complex action occurring over minutes such as vacuuming a room. In this work, we will

address the temporal localization problem whereby for a given video we find the start

and end times of actions in the video. To achieve this we propose 3 temporal localization

networks utilising the ActionVLAD, Non-Local Blocks & VideoGraphs methods that take

pre-trained I3D features containing both spatial and temporal information as an input. We

compare these methods on the Charades per-frame localization task, with only RGB frames

we achieve 14.31%, 11.58 & 13.76% mAP, respectively. We develop and train 3 alternative

networks based on the same methods that take in average pooled I3D features in the spatial

dimensions, thereby training the networks on temporal information only. ActionVLAD,

Non-Local block & VideoGraphs trained on the temporal features obtain 9.373%, 9.408% &

10.73% mAP respectively. We perform in-depth evaluation and analysis of these different

models by investigating the Average Precision per class & per noun/verb group used in

the generation of the Charades action set. Finally, we visualize the nodes/centroids of

the VideoGraphs and ActionVLAD layers to interpret any semantic representations these

layers may have learnt.
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1 Introduction

1.1 Problem Definition

Action recognition is the process of identifying actions performed by one or more actor/s

in a given context based on some observations. Actions come in all shapes and sizes, be

it a simple action occurring over a couple of seconds such as raising your arms to more

complex action occurring over minutes such vacuuming a room. Herath et al. [HHP17]

define an action as the most elementary human-surrounding interaction. This definition

limits actions to humans which is not the case in a broader sense but is sufficient for our

work as we will focus on human actions.

Action recognition has been investigated in depth in many occasions [WRB11], [HHP17].

Interest in the area has been shown by works of research even conducted in the 80’s [Hog83].

Works in this area have mainly been applied to visual observations such as video but not

exclusively, there are works which use other observations such as audio [OMK+14]. There

are different subsets of the action recognition problem, namely, Temporal localization,

Spatio-temporal localization and Spatio-temporal localization and tracking. In this work,

we will focus on Temporal Localization of actions in untrimmed videos.

The Temporal Localization task we are addressing involves an untrimmed video in

which actions occur by individuals or objects. The problem is that we do not know in

which time points these actions are occurring. Therefore, a system has to be developed

that parses the video and assigns an action, several actions or no actions to each time

points. Figure 1 shows a visualization of this problem whereby, a sequence of video frames

are assigned different action classes at several time points.

Applications of temporal localization are diverse, with many applications having deep

economical & societal impact leading to a high interest in this research area. With the

explosion of research in Artificial Intelligence many have started to speculate and imagine a

future whereby robots become a more frequent occurrence in our life. What makes human

communication so unique is not only our ability to speak and write but also to understand

others based on their behaviour and react to that. Thereby we can imagine how action

recognition can be a basis for such works in improving robot perception and open up

further possible applications. Another interesting application of action recognition is in

the area of smart cities. Smart cities, when implemented well can improve many problems

people experience in cities. Problems that can be addressed with action recognition are

numerous for example identifying littering behaviour, recognition of violent behaviour and
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Figure 1: The Temporal Localization Problem visualized, above we can see a sequence
of video frames which are assigned an action, multiple actions or no actions to each time
point. Reproduced from [YRJ+18].

many others. Other application areas include surveillance, healthcare, video retrieval etc.

The focus of this research as mentioned above is to solve the temporal localization

problem by identifying and implementing the most effective methods of temporal modelling

to localize actions by humans in videos. As well as to analyse and understand the behaviour

of the modelling techniques used.

1.2 Motivation

In recent years, we have seen many technological advancements that have enabled us

to perform research and work in fields that were not feasible before. There are many

examples of this, activity recognition is no exception as the computational complexity

of current methods required large computation and memory requirements that were not

possible in the past. Withal, a large number of successful works in the domain of computer

vision and deep learning have been published which enables us to build on top of this

work. With the ever-increasing developments, more and more challenges/datasets become

publicly available.

Apart from the feasibility of such research, Artificial Intelligence has become a focus
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point in many industries and even countries with countless forward-looking ideas on how AI

can be applied to tackle very different problems. However, for these solutions to become

reality there are several obstacles we need to overcome. Computer Vision is one of the

domains in which many modern applications rely on. We think that with the improvement

of Action Recognition research, many new applications will start to emerge and many

others would improve.

1.3 Scope

In this work, we will describe and test different approaches to temporally localize action

in untrimmed videos. A dataset of videos where human individuals perform actions will

be used to temporally localize these actions. The dataset will contain dense labelling with

a frame-level annotation rather than video-level. We will focus our efforts on the tempo-

ral modelling aspect and not in designing an end-to-end temporal localization network.

Therefore, for an effective execution of this project, we will use pre-trained 3D CNN to

extract features from the videos.

1.4 Aims & Objectives

In this project, we aim to tackle the Activity Recognition challenge of the Charades dataset.

We will develop a pipeline and investigate order-less temporal modelling approaches such as

Self-Attention, ActionVLAD & VideoGraphs. Specifically, we aim to answer the following

questions:

• Are ActionVLAD, Self-Attention & VideoGraph methods amenable to temporal ac-

tion localization in untrimmed videos?

• Specifically, can we use these methods as part of a model to temporally localize

actions in videos on a per-frame level rather than video-level?

• Given that we extract a temporal feature set and a Spatio-temporal feature set from

a video. Do models trained on the temporal feature set generalize differently than

the models trained on the Spatio-temporal feature set?

1.5 Report Layout

The Background and Related works sections can be found in Section 2 & 3, respectively.

Chapter 4 includes the Methods section. The evaluation & results of the system are
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described in Chapter 5 and the discussion is noted in Chapter 6. The future works can be

found in Chapter 7 & the conclusion is discussed in Chapter 8.

2 Background

In this section, we describe techniques that are referenced throughout the research. These

techniques are the basic concepts used in the implementation of our research.

2.1 3D Convolutional Neural Networks

Deep learning methods have become significantly better than most hand-crafted methods.

These methods have achieved competitive performance in many challenges in domains such

as Natural Language Processing, Audio classification, denoising, human-machine interac-

tion and much more. Namely, Convolution Neural Networks (CNNs) have been in use in

the computer vision domain for countless challenges. CNNs are a type of deep learning

model that learn trainable filters and utilise pooling operations over local neighbourhoods

on raw image inputs. It has been demonstrated that CNNs can to be invariant on some

variations such as pose, lighting etc.

CNNs have been mainly utilised as 2D CNNs such that they are applied to individual

image frames. To be able to extend these works to videos, Ning et al. [NDL+05] applied

2D CNNs to frame-level images from videos, however, this approach misses out on motion

information present in contiguous frames of a video. To be able to capture spatial infor-

mation in the images and also temporal information from multiple contiguous frames Ji

et al. [JXYY12] propose a 3D Convolutional Neural Network, where the conventional 2D

convolutions in CNNs are replaced with 3D substitutes.

3D convolutions are applied to both the spatial and temporal dimensions. This is

achieved by performing multiple convolutions at the same location using a 3D kernels to

a number of stacked contiguous frames. By this formulation, feature maps in the convolu-

tion layer are linked to multiple contiguous frames, thereby capturing motion information.

Mathematically, the value of the (x,y,z) on the jth feature map of the ith layer is defined

as:

vxyzij = tanh(bij +
∑
m

Pi−1∑
p=0

Qi−1∑
q=0

Ri−1∑
r=0

wpgrijmv
(x+p)(y+q)(z+r)
(i−1)m ) (1)

where Ri the size of the 3D kernel along the temporal dimension, wpqrijm is the (p, q, r)th
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Figure 2: Comparison of (a) 2D and (b) 3D convolutions. Reproduced from [JXYY12]

value of the kernel connected to the mth feature map in the previous layer. A comparison

of 2D and 3D convolutions is given in Fig. 2.

2.1.1 Two-Stream Inflated 3D ConvNets (I3D)

Prior to the works presented by Carreira et al. [CZ17], most 3D CNNs were pretty shallow,

this was mainly due to the higher dimensionality of parameterization with deeper networks

and the lack of labelled video data. Carreira et al. observed that there are countless works

on image classification that have achieved state-of-the-art results such as Inception, VGG-

16 & ResNet. The authors show that these networks can be inflated into Spatio-temporal

feature extractors. This is done by inflating all filters and pooling kernels in the networks,

which results in an additional dimension for temporal information. Specifically, most filters

have a dimension of a square NxN which will be inflated to a cube NxNxN . Apart from

the architecture, the authors looked at bootstrapping the pre-trained weights from 3D

networks to 2D. To achieve this, 2D weights are repeated N times along the temporal

dimension and are rescaled and divided by N . They show that a two-stream network is

ideal, therefore they train an RGB model and an Optical flow model. The final models

trained are an inflated Inception V1 network with bootstrapped weights from training on
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ImageNet. Finally, they train the inflated network on the Kinetics dataset [KCS+17].

2.2 Non-Local Approaches

While CNNs consider local neighbourhoods to compute the convolutions, non-local ap-

proaches compute responses as a weighted sum of features at all locations.

2.2.1 Self-Attention & Non-local Networks

Self-attention [WGGH18] has been extensively used in NLP, specifically in Natural Lan-

guage Understanding. Self-attention computes responses at a position in a sequence by

attending to all positions and taking a weighted average in an embedding space. The

authors consider self-attention as a form of non-local mean which allows us to utilise the

concept of self-attention in computer vision. Formally a non-local operation is defined as:

yi =
1

C(x)

∑
∀j

f(xi, xj)g(xj) (2)

Where i is the index of an output position to be computed and j enumerates all possible

positions. x is the input feature and y is the output feature of the same size as x. A

pairwise function f computes a scalar representing a relationship between i and all j. The

function g computes a representation of the input signal at the position j. Normalization

is done with the factor C(x).

There are different versions of the f & g functions, the authors consider g as a form of

linear embedding, where g is implemented as a convolution over space or spacetime. They

present different functions for the pairwise function f, namely, a Gaussian function, an

Embedded Gaussian function, Dot-product and Concatenation. To be able to incorporate

the non-local mean operation in any network, the authors define a non-local block as

follows:

zi = Wzyi + xi (3)

where yi is defined by Eq. 2 and xi is the residual connection which allows for the non-local

block to be inserted into any pre-trained model without breaking the original behaviour.

The non-local block is visualized in Figure 3.

6



Figure 3: Spacetime Embedded Gaussian non-local block visualization, reproduced from
[WGGH18]

2.2.2 VideoGraph

Hussein et al. [HGS19] propose a method for modelling minute-long temporal dependencies

called VideoGraph. The idea is to learn an undirected graph representation for human

activities. These graph representations such as nodes and edges are learnt entirely from

the video dataset. Graph nodes N are representation of a dominant latent short-range

concept called a unit action. Unit actions can be though of as building block of human

activities.

To represent unit actions or graph nodes, the authors propose to learn a latent features

Y, Y = {yj|j = 1, 2, ..., N}, Y ∈ RNxC which are vector representations of graph nodes N .

Then, for each feature xi a correlation is calculated with the vector representations Y of

the nodes. To achieve this, they propose the node attention block, which takes an input

feature xi as input and node features Y. Formally the node attention block is defined as

follows:

Ŷ = w ∗ Y + b (4)

α = σ(xi ∗ Ŷ T
i ) (5)

Zi = α� Ŷ

= αj � yj, j = 1, 2, ..., N
(6)
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Equation 4 is a one layer MLP transformation that allows the node learnable and better

suited for the dataset presented. Activations are collected in Equation 5 by applying an

activation function on the dot product similarities between xi & Ŷ such that non-linearity

is applied. Finally, all the nodes Ŷ are multiplied with the activation values α to obtain a

representation, Zi, of segment si in the same feature space as the nodes. A representation

of the node attention block is depicted in Figure 4a.

Furthermore, the authors propose a way to learn graph edge, ε to obtain a full graph

structure. To achieve this they propose a new graph embedding layer, depicted in figure

4b. This layer is designed to extract information from two types of relationships, firstly,

from the temporal aspect of unit actions and secondly, between unit-actions themselves.

To learn both of these relationships they utilise a 1D Convolutions over time and the nodes.

For learning the relationship between nodes, given the graph nodes learnt {Zi, ..., Zt}, a

node-wise 1D convolution is applied, that is, a convolution over the elements in each Zi

representation. As for learning a temporal relationship between nodes, the convolution is

applied to the temporal dimension only.

Both of these convolutional layers learn different graph edges for each channel, therefore,

a 2D convolution is applied to model cross-channel correlations in each node feature zij.

Subsequently, the resulting graph edges are passed through BatchNormalization & Relu

Layers. Finally, the full graph representation Z is down-sampled over time and node-

dimension using a MaxPooling operation with kernel size and stride of 3.

2.3 VLAD, NetVLAD & ActionVLAD

Vector of Locally Aggregated Descriptors (VLAD) [JDSP10] is a popular aggregation of

feature descriptor created as a simplification of the Fisher kernel. VLAD stores information

about the statistics of local descriptors aggregated over the image. In contracts to the bag-

of-words method which keeps a count of visual words, VLAD stores a sum of the vector

representation of the difference between the descriptor and cluster centroids for each visual

word, called residuals. Formally the VLAD descriptor is defined as follows:

V (j, k) =
N∑
i=1

ak(xi)(xi(j)− ck(j)) (7)

where xi(j) and ck(j) are the j-th dimensions of the i-th descriptor and k-th cluster centre,

respectively. ak(xi) denotes the membership of the descriptor xi to cluster ck.
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Figure 4: The node attention block reproduced from [HGS19]

Arandjelovic et at. [AGT+16] propose NetVLAD to mimic the behaviour of VLAD in a

CNN layer to represent an image. The network they propose can be trained as an end-to-

end network. To achieve this, the VLAD layer must be differentiable, the authors recognise

that the hard assignment ak(xi) of descriptors xi to cluster centres ck is not differentiable.

Therefore, they propose a soft-assignment of the descriptors to multiple clusters, formally:

āk(xi) =
e−α||xi−ck||

2∑
k′ e
−α||xi−c′k||2

(8)

=
ew

T
k xi+bk∑

k′ e
wT

k′xi+bk′
(9)

Equation 9 is a simplified version of Equation 8 by expanding the squares. Substituting

the soft-assigment back into the VLAD descriptor in Equation 7 we obtain the following:

V (j, k) =
N∑
i=1

ew
T
k xi+bk∑

k′ e
wT

k′xi+bk′
(xi(j)− ck(j)) (10)

The NetVLAD layer as seen in 10 has three sets of learnable parameters wk, bk & ck in

contrast to VLAD which only learnt the clusters ck. This gives NetVLAD greater flexibility,

ability to learn in an end-to-end manner in a CNN & aggregates first-order statistics of
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residuals much like the original VLAD

Girdhar et al. [GRG+17] propose an extension of the NETVLAD layer for Spatio-

temporal aggregation. They propose a very similar ActionVLAD layer which has an extra

aggregation over time, formally, the VLAD descriptor is calculated as follows:

V (j, k) =
T∑
t=1

N∑
i=1

ew
T
k xit+bk∑

k′ e
wT

k′xit+bk′
(xit(j)− ck(j)) (11)

3 Related Work

3.1 Datasets

In this section we will discuss varies datasets which have been used for the temporal

localization problem in untrimmed videos. An important factor in action detection is the

length and complexity of actions, some dataset contain actions which are relatively short

such as the Kinetics [KCS+17] & AVA [GSV+17] datasets. Others datasets contain actions

which occur over a longer period of time such as Charades [SVW+16], & MultiTHUMOS

[YRJ+18].

Atomic Visual Actions (AVA) dataset is a video dataset containing 80 atomic visual

actions which are densely labelled across 430 15-minute videos. This leads to 1.58 mil-

lion labels with multiple labels occurring per person frequently. The dataset is focused on

defining atomic actions rather than complex composite actions. The latest release of the

Kinetics dataset, Kinetics-700, is relatively larger dataset containing high-quality videos

from YouTube. These videos include a range of human-focused actions spread over ap-

proximately 650K videos covering 700 human action classes. Each class contains at least

600 video clips and last around 10 seconds.

MultiTHUMOS is an extension of the THUMOS dataset, containing 30 hours of video

across 400 videos with dense, multilabel, frame-level action annotations of 65 classes. In

total, the dataset contains 38.5K annotations with a density of around 1.5 actions per frame

& around 10.5 actions per video. The Charades dataset, named after the popular American

game, is a publicly available dataset containing 9848 videos of everyday activities that occur

at home. The dataset is collected in 15 types of indoor scenes, involves interactions with

46 object classes and has a vocabulary of 30 verbs leading to 157 action classes. It has

66,500 temporally localized actions, 12.8 seconds long on average, recorded by 267 people

in three continents. Figure 5 depicts sample frames of actions from the dataset.
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3.2 Initial works, Holistic Representations & Local descriptors

Initial work in action recognition has been done on 3D models to describe actions. Although

methods such as WALKER [Hog83] have proven to be effective, 3D models are difficult

and expensive to construct. Subsequently, research followed in two directions for alternate

representations of actions namely Holistic & Local representations. With the success of

Deep Learning, most research nowadays is focused on Deep Neural Networks.

Approaches using Holistic Representation rely on a global representation of human

body structure, movement and shape. Most interestingly, Bobick et al. [BD01] introduced

a new representation for human movement by utilising temporal templates. Two templates

were introduced the Motion Energy Image (MEI) and the Motion History Image (MHI).

MEI describes where motion happens while MHI shows how the MEI is moving. These

templates have been used in many other works as they contain useful information about

the context of the videos. Tian et al. [TCLZ12] proposed a Hierarchy Filtered Motion

method that filters out moving and cluttered backgrounds by utilising the gradient of the

MHI template.

These techniques [HS+88], [BD01], [YS05] have produced some interesting works, which

at the time were considered state-of-the-art. However, researchers [DRCB05], [MHS09]

often found that the holistic approaches were far too rigid to handle the many possible

variations of actions.

Local descriptors became popular and soon outperformed Holistic Approaches. Local

approaches, as with images, require keypoint detection, keypoint local description and

aggregation of local descriptors. Initial work in local descriptors involved extending 2D

keypoint detection, local descriptors and aggregation to 3D ones [Lap05], [WTVG08].

Due to an issue with the spareness of keypoints, works started to appear that disinte-

grate spatial locations from the temporal one [DRCB05]. This is based on the intuition

that actions do not have to occur on the same spatial location for its duration, this fueled

works with trajectories [MPK09], [MHS09] as opposed to cuboid based works [DRCB05],

[Lap05].

3.3 3D CNNs

As mention in Section 2.1, a large number of works in CNNs in recent years has enabled

the success of many research works in the area of computer vision. Ji et al.[JXYY12]

introduced 3D convolutions which enabled CNNs to perform convolution in the spatial and

11



temporal domain by using 3D kernels. The authors show that their method outperforms

other methods on the TRECVID dataset.

Some of the downsides of 3D CNNs are that they have a rigid temporal structure as

they accept a pre-defined number of frames as an input. Moreover, they require a large

number of parameters to be trained, much greater than that of 2D CNNs.

Kong et al. [TBF+14] extend 3D CNNs to a more modern architecture named C3D,

containing 5 convolutional layers, 5 max-pooling layers, 2 fully connected layers and a

softmax layer. The network was extensively tested on 4 different tasks and 6 different

benchmarks by using features from the network and a simple linear classifier. Specifically,

on action recognition, they obtain an accuracy of 85.2% on both UCF101 & Sport1M.

There are many ways to model temporal information, in general, Ng et al. [YHNHV+15]

investigate different convolutional temporal feature pooling methods and found that max-

pooling operations are preferable.

Karpathy et al. [KTS+14] introduce the concept of slow fusion to increase the tem-

poral support of a CNN. Slow fusion, a convolutional network accepts several consecutive

frames of a video and processes feed them to the same layers to produce activations across

the temporal domain. These activations are then fed to fully connected layers to obtain

features. The authors also propose a multi-resolution CNN consisting of two identical net-

works accepting different resolution images. The multi-resolution CNN can learn faster

with no cost to the accuracy. The authors show significant performance improvements

compared to the UCF-101 baseline 63.3% accuracy up from 43.9%

Many works followed that use 3D CNNs for action detection [SJYS15], [DPVG16],

[MSPGiN16]. By extending kernels to 3D learnable parameters in CNNs increased sig-

nificantly, Sun et al. suggested a factorization of a 3D kernel into a combination of a

2D and 1D kernel [SJYS15] that has comparable performance as the 3D one but contains

significantly less learnable parameters.

Girdhar et al. [GRG+17] introduce a new video representation for action classification

that aggregates local convolutional features across the entire Spatio-temporal extent of the

video inspired by the VLAD descriptor named ActionVLAD. They investigate into which

strategies for pooling across space and time perform best as well as benchmarking their

representation on different datasets. They achieve 93.6% & 69.8% accuracy on UCF101

& HMDB51, respectively with a two-stream RGB & optical flow network for video-level

classification. With an RGB network only they achieve 21% mAP on the Charades dataset.

Carreira et al. [CZ17] as described in section 2.1.1 introduce a new two-stream inflated
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3D CNN that is based on 2D CNN inflation. Utilising only the RGB stream, they obtain

state-of-the-art activity classification on video-level for the UCF101, HMDB51 & Kinetics

datasets with accuracy rates of 84.5%, 49.8% & 71.1%, respectively.

3.4 Non-Local

The recent success of the self-attention in the area of NLP [VSP+17] has inspired work

in computer vision with non-local operations. While CNNs and RNNs consider one local

neighbourhood, Non-local operations are ideal to capture long-range dependencies. Wang

et al. [WGGH18] propose a new building block for Neural networks which is a spacetime

equivalent of non-local mean operation. They achieve a 77.7% top-1 accuracy and 93.3%

top-5 accuracy on the Kinects dataset.

Wu et al. [WFF+18] propose a pipeline for long-term feature banks using non-local

operations. These long term-feature banks are support features extracted from the entire

video/clip. The long term feature banks can be looked at as a ’memory’ of what has

happened throughout the whole input video. These feature banks can be part of any

state-of-the-art video model that would only view short clips otherwise. Their experiments

show that incorporating 3D CNNs with a long-term feature bank gives state-of-the-art

results AVA, EPIC-Kitchens and Charades for action recognition.

3.5 Temporal Localization

Gaidon et al. [GHS13], [GHS11] introduced the problem of temporal localization in

untrimmed videos focusing on a limited action set such as ’drinking and smoking’. As

more large scale untrimmed video datasets became available with fine-grained actions more

works started to be conducted.

To better exploit temporal information some works have focused there works on RCNNs

or specifically LSTMs. Due to the recurrent nature of RNNs, they are ideal for time-series

modelling. Baccouche et al. [BMW+11] propose a method for extracting features with

3D CNNs and classifying actions by feeding these features to an LSTM. Donahue et al.

[DAHG+15] propose a recurrent convolutional architecture which is end-to-end trainable

and suitable for action recognition. Li et al. [LQY+16] consider different granularities of

a video such as a single frame, a clip or the entire video. These granularities are modelled

with CNNs and also fed to an LSTM to leverage temporal queues.

Yeung et al. [YRJ+18] introduce the MultiTHUMOS dataset with multi-label anno-
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tations for every frame in the THUMOS dataset. The authors also propose an LSTM

network to model multiple input and output connections to predict frame-level annota-

tions for multiple classes. They achieve an mAP of 41.3% and 29.7% on THUMOS and

MultiTHUMOS, respectively.

Shau et al. [SCZ+17] propose a novel network called Convolutional-De-Convolutional

(CDC) network, that places CDC filters on top of a 3D CNN. The authors suggest that

most prior works perform temporal localization at segments level. The CDC filters perform

temporal upsampling and spatial downsampling operations simultaneously to predict ac-

tions at frame-level granularity. Their model beat the current state-of-the-art on per-frame

labelling on THUMOS’14 with an mAP of 44.4%.

Piergiovanni et al. [PR18] propose a novel way to learn latent super-events from activity

datasets. The authors define super-events as a set of multiple events occurring together

in videos with a particular temporal organization. To be able to capture how events are

temporally related in videos, they propose a temporal structure filter which can be included

in a deep learning model and trained end-to-end. The authors utilise the I3D network to

extract features from video segments. Their best model achieves mAP of 36.4%, 19.41%

& 8.3% on MultiTHUMOS, Charades & AVA dataset, respectively.

4 Method

In this section, we will discuss the approach taken to temporally localize actions in untrimmed

videos. Our approach utilises pre-trained 3D CNNs & temporal modelling networks.

4.1 Dataset

We have chosen to use the Charades dataset for our experiments 3.1 which contains 9848

videos of daily activities with an average action time of 30.1 seconds. The dataset is

collected in 15 different indoor scenes involving a vocabulary made up of 46 object classes

and 30 verb classes to generate 157 action classes. The dataset contains 66.5K temporal

instances recorded by 267 individuals in three continents.

The dataset was created by using the popular Amazon framework Amazon Mechanical

Turk (AMT), whereby individuals submitted videos based on scripts generated by the

authors. To generate the scripts, the authors analysing the TF & TF-IDF of 549 popular

movies and created the 30 verb classes and 46 object classes from the most occurring verbs

and nouns. Workers on AWT were presented with a scene, 5 randomly selected nouns
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and 5 selected verb actions. The workers generated scripts using 2 nouns and 2 verbs of

their choice about realistic and commonplace activities in their home. These scripts were

presented to other works which acted out the script and recorded themselves doing so. The

videos were then given to other workers to describe what is happening in the video while

others were assigned to temporally annotate the videos.

Figure 5 shows some sample actions classes and a respective frame sample of that

action. Each row of the figure is extracted from the same video, which could have multiple

action occurring in a single frame. Hence, some frame samples look very similar yet are

assigned a different annotation, in reality, it might be that there are multiple annotations

for that frame.

Figure 5: Charades Dataset samples, reproduced from [SVW+16]

4.2 Feature Extraction

The process of temporally localization actions starts off with our video files, V . We sample

the video files @ 24 fps generating thousands of frames from the dataset. We extract
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Figure 6: Feature extraction pipeline: Video files are split into 32 contiguous frame
segments and are fed to the I3D networks saving the Mixed5c features. This leads to
the Spatio-temporal feature set. The 3D spacial Average Pooling is only applied to obtain
the temporal feature set.

features using the RGB stream of the I3D network described in section 2.1.1, which was

initially trained on the Kinetics dataset and fine-tuned in the Charades dataset.

The extracted frames are of different resolutions, therefore, a centre crop is applied

to the frames at a resolution of 224. Features are extracted by first generating segments

si for every 32 consecutive frames. Each segment si is feed into the I3D network and

the ’Mixed 5c’ features F are generated. Formally, for each video vi we obtain segments

of 32 consecutive frames represented as xi ∈ RBx3x32x224x224. The resulting features will

be a representation of 4 timesteps, due to the temporal grouping of 8 frames by the I3D

network, in the form of fi ∈ RBxCx4x7x7. Where C is the channel size & B is the batch

size. For all of our experiments, the channel size was set at 1024. The final feature set is

the Spatio-temporal features, to further understand the temporal models we create a set of

temporal feature set. These are obtained by passing the Spatio-temporal features through

a 3D Average Pooling layer over the spatial domain. This leads to a feature set in the form

of fi ∈ RBxCx4x1x1. Figure 6 depicts the feature extraction process.
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Figure 7: Network A: ActionVLAD Temporal Localization Network.

4.3 Temporal Localization

In this step, we propose our temporal localization networks utilising different orderless

statistical approaches. The networks we propose are fed features vectors F and output

frame-level predictions of action classes.

4.3.1 Network A: Utilising ActionVLAD

ActionVLAD has shown to be an effective aggregation technique for Spatio-temporal video

representation. For our first model, we propose a Temporal localization network that

utilises the ActionVLAD layer proposed in [GRG+17]. The network is set up with a 1-

Layer MLP & an ActionVLAD layer to learn a Spatio-temporal aggregation for temporal

modelling. The representation is then fed to the 2-layer MLP which is used as a classifier

for action detection.

Specifically, we start with a feature vector, fi ∈ RBxDxTxWxH , representing a segment

si. We transform the features using a one hidden layer MLP with a dropout, batch nor-

malization & a leaky relu. The transformed feature xi ∈ RBxH1xTxWxH is fed into the

ActionVLAD layer described in section 2.3. The soft-assignment over the clusters is calcu-

lated as described in equation 8, leading to activations α̂ ∈ RBxTWHxClusterSize. We then use

equation 10 to calculate the VLAD descriptor with soft-assignment, Vh ∈ RBxH1xClusterSize.

The VLAD descriptor is then normalized and reshaped into a 1 dimensional vector repre-

sentation V ∈ RBxClusterSizeH1. Finally, to classify the features to action classes we pass

the normalized VLAD vector through a two hidden layer MLP with Dropout layers, Batch

Normalization & Leaky Relu. Figure 7 depicts the setup of network A.
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Figure 8: Network B: Non-Local Block Temporal Localization Network.

4.3.2 Network B: Utilising the Non-Local Block

Non-Local & self-attention based operators have shown impressive results in modelling

long-term dependencies in different tasks. We propose our second model that utilises the

Non-local Block propose by [WGGH18]. The network first uses the non-local block to

obtain a response over both space and time, this is then fed into a 3D average pooling

layer and a convolutional layer to aggregate the features over space and time. Finally, a

2-layer MLP is used as a classifier for the action detection task.

Similar to before we start with a feature fi ∈ RBxDxTxWxH representing a segment

si. The features are initially fed into a 3D non-local block as described in section 2.2.1,

producing features of the same size. Unlike the other methods, the non-local block outputs

features of the same size. Therefore, we use average pooling over the spatial dimensions

with a kernel of [1,7,7]. For the temporal dimension, we use a convolutional layer with a

kernel of [4,1,1] followed by a Batch Normalization & Leaky Relu layers which we call the

Convolution Block. Finally, we pass the features to a hidden two-layer MLP with Dropout

layers, Batch Normalization & Leaky Relu. Figure 8 depicts the setup of network B.

4.3.3 Network C: Utilising VideoGraphs

Our last model utilises a recently proposed modelling technique that is able to learn minute-

long dependencies & the temporal structure of actions called VideoGraph [HGS19]. The

network is set up very similar to the paper proposed, we learn a graph representation by

passing the features & randomly initialised centroids through a Node Attention layer &

a Graph embedding layer. The Graph representation is Max Pooled over space and time

and is fed to a 2-Layer MLP classifier to predict action classes.

For node attention we start with a feature fi ∈ RBxDxTxWxH representing a segment

si & a randomly initialised set of centroids Y ∈ RNxC . The features & centroids are fed

into the node-attention block as described in section 2.2.2 to obtain a node representation

Zi. To achieve this we have to learn the graph edges ε. Graph edges, ε, we feed the node
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Figure 9: Network C: VideoGraph Temporal localization network

Figure 10: Non-Local Block Temporal Alternative

representations Z through two successive graph embedding layers. The outputted features

are fed into a two-layer MLP with Dropout layers, Batch Normalization & Leaky-Relus

nonlinearity. Figure 9 depicts the setup of network C.

4.3.4 Temporal feature alternatives

The networks described above consume the Spatio-temporal feature set where the features

are of the form fi ∈ RBxDxTxWxH where W & H > 1. As described above, we want to

investigate the networks ability to learn from only temporal features where the features will

be of the form fi ∈ RBxDxTxWxH where W & H = 1. To achieve this, we have obtained the

temporal feature set by average pooling over the W & H regions on the Spatio-temporal

feature set. The temporal feature set can be fed to the same networks defined above with

some minor tweaks. To adapt Network A and Network C for temporal features it is only a

matter of parameter initialisation of the experiments. However, to adapt Network B it is

required to remove the 3D Spatial pooling layer as this has already been done in the feature

extraction phase of the temporal feature set. Figure 10 depicts the temporal alternative

network without the 3D Spatial pooling layer.
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5 Experiments & Results

In this section, we will describe how we set up our experiments as well as the results

obtained. We will also perform an analysis of these experiments.

5.1 Experimental Setup

In the section above we have defined 3 networks with 2 variations of each, one consumes

temporal features while the other consumes Spatio-temporal features. We train an addi-

tional baseline network on the temporal feature set. The network contains a 3D Average

pooling layer over the time domain again with a kernel size of (4, 1, 1) and a two-layer MLP

classifier. This leads to 7 networks that we have to train & test. The networks described

output logit probabilities of action classes for the features fi representing a segment si

with 32 frames. Therefore, since we are addressing the per-frame classification task, the

prediction of the network for one segment si is associated with every frame in the segment.

We train these networks on the original train/test splits published with the Charades

Dataset [SVW+16]. Training is performed by passing the logit probabilities through a

Sigmoid activation which is used to calculate the Binary Cross Entropy Loss. The inputted

features are fed in a Batch Size of 140 for 100 epochs over the dataset. After each epoch, the

dataset is shuffled to avoid overfitting. The network is optimized using Adam optimizer

with a learning rate of 0.0001. For testing, the logit probabilities are passed through a

Softmax Activation which gives multi-class probabilities for the inputted segment. These

probabilities are used the calculate the metrics described below on the test set after each

epoch.

5.2 Metrics

The temporal localization problem, specifically on a dataset which contain multiple labels

are usually evaluated on the Mean Average Precision (mAP) metric. This is a better metric

to evaluate densely labeled videos in comparison to the Accuracy Metric. We investigate

the correlation between the Average Precision (AP) per action class similar to what has

been done in [SVW+16]. As we have discussed above, the Charades dataset is made up

of vocabulary of 40 objects and 30 actions in 15 scenes. We will investigate any relation

between these groups of action classes using both the mAP per group and the AP for each

group member.
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SpaceTime mAP (%) Time mAP (%)
I3D + 3D Pool + 2Layer MLP 5.13
I3D + Non-Local block + 2Layer MLP 11.58 9.408
I3D + ActionVLAD + 2Layer MLP 14.31 9.373
I3D + VideoGraphs + 2Layer MLP 13.76 10.73

Table 1: Results obtained from our methods with SpaceTime or Time featrues feed into
our temporal model on the Charades dataset.

5.3 Temporal Localization

In this section we will investigate the results obtain on the temporal localization experi-

ments described above using the Charades dataset.

5.3.1 Dataset Results

The networks defined in Section 4 were trained as described in Section 5.1, and are evalu-

ated using the metrics described in Section 5.2. We train the networks for 100 epoch, save

the model after each epoch and then evaluate the model on the test set. After training

has finished, we pick the best performing model on the test set. Table 1 shows the re-

sults obtained on the best performing models. Our best performing model obtains 14.31%

mAP when using SpaceTime features and 10.73% mAP on temporal features only. The

best performing method on spatial-temporal features is ActionVLAD while VideoGraphs

seem to to have a significant improvement over the other methods when dealing only with

temporal features.

5.3.2 Temporal Models

The temporal models that we will be evaluating in this sections are those networks which

were trained on the temporal feature set. We first look at the different performance between

the three different temporal models. Using the mAP measure, we see that the VideoGraphs

model performs better than the other models on average overall dataset.

Therefore, we have a look at the Average Precision of the different action classes.

Figure 11 show the three temporal methods compared on a per-class basis. It is clear from

the figure that VideoGraphs performs significantly better in most classes. Specifically, we

observe better temporal performance in classes such as ’Sitting in a chair’ & ’Working on

a laptop’. Noticeably, this method does not perform well in action classes such as ’Closing

a refrigerator’ & ’Looking outside a window’.
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Figure 11: Temporal Model Average Precision (AP) per Action Class on the Charades
dataset.

To further understand the generalization behaviour over the action classes we investi-

gate the mAP over the 30 different verbs and 15 different objects contained in the vocabu-

lary of the actions classes. We investigate the two best-performing methods VideoGraphs

& ActionVLAD. In Figure 12 we plot the 5 highest and lowest AP difference for the two

models. We can see that VideoGraphs perform reasonably better in ’Cooking’, ’Lying’

& ’Drinking’ verb groups and ’Sofa/Couch’, ’Floor’ & ’Bed’ object groups. While Ac-

tionVLAD performs reasonably better in the ’Run’, ’Sneeze’ & ’Close’ verb groups and

’Refrigerator’, ’windows and ’medicine’ object groups.

5.3.3 Spatio-temporal models

Spatio-temporal models are those variations of the networks described above that are

trained on the Spatio-temporal feature set. As we have seen above, the models perform

differently when exposed to additional spatial information. Using the mAP measure over

all the test set, we found that the ActionVLAD model performs best at 14.31%. Figure 13

depicts the Average Precision per-class for all action classes in the test set of the Charades

dataset. ActionVLAD performs well on action classes such as ’Sitting in a chair’ & ’Fixing
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Figure 12: Comparison between Video Graphs (Negative) and ActionVLAD (Positive)
on AP per class. Showing the top 5 positive and top 5 negative difference values. The
Blue graphs indicate the models trained on the Temporal feature set while the Red graphs
indicate the models trained on the Spatio-temporal feature set.

their hair’. An interesting observation is that VideoGraphs perform significantly better in

actions such as ’Lying on the couch’, ’Washing a mirror’ & ’Washing a table’.

Figure 13, depicts the Average precision per class difference for the Spatio-temporal

models on the ActionVLAD and VideoGraph models. We depict these models in red for

verb and object groups. ActionVLAD performs significantly different than Node attention

in the ’Run’, ’Sneeze’ & ’Work’ verb classes while performing better in the ’Hair’, ’Window’

& ’None’ object groups. Video Graphs performs slightly better in the ’Cook’, ’Make’ &

’Play’ verb classes and the ’Sofa/Couch’, ’Food’ & ’Bed’.

5.4 Temporal vs Spatio-temporal feature sets

In this section, we will be investigating the behaviour of the two alternatives of each model

ie. the model trained on the temporal feature set as opposed to training it on the Spatio-

temporal feature set. We have shown above that there is a significant improvement when

introducing the additional spatial information on the whole dataset. We will investigate

the performance per class of the temporal vs Spatio-temporal models.

5.4.1 VideoGraphs

We plot the AP performance per-class for the top 50 performing classes for the VideoGraphs

method in Figure 14. The scatter plot shows the 50 samples on a 2D plane where any-

thing below the diagonal dotted line performs better when trained on the Spatio-temporal
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Figure 13: Spatio-temporal Model Average Precision (AP) per class for the Charades
dataset.

features while if above, the model trained on temporal features performs better. When

a sample is close to the diagonal line the method performs relatively the same on both

methods ie. not gaining any extra information from the introduction of spatial features.

From this plot, we can see that ’Sitting in a chair’, ’Sitting at a table’ & ’Tidying with

a broom’ are the best performing classes similar to our previous analysis. We can also

look at the classes which have high and low differences. ’Holding a vacuum’, ’Someone

is cooking’ & ’Watching a laptop or something on a laptop’ are the action classes which

benefit the most from the addition of spatial information. While ’Lying in bed’ & ’Someone

is holding a paper/notebook’ benefit very little from the addition of spatial information.

In general, there is a very clear improvement in the top 50 performing classes when trained

on Spatio-temporal features.

Figure 14 shows the per class

The scatter plot above gives us some insight into the improvement of VideoGraphs

when trained on the Spatio-temporal feature set. However, we plot another scatter plot of

the AP performance of the verb and object groups. These are plotted on the same plane

and can be found in Figure 15. The green points depict Verb groups and the red points

depict the object groups. We observe that there are some high performing groups which
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Figure 14: Comparing the Top 50 performing action classes of the VideoGraphs networks.

are significantly improved by the introduction of spatial features mainly the ’Cooking’ verb

class & the ’hair’ & refrigerator’ object classes. The ’Stand’, ’Awaken’ & ’Snuggle’ classes

are almost not impacted at all by the introduction of these features.

5.4.2 ActionVLAD

Subsequently, we plot the per-class performance for the top 50 performing class for the Ac-

tionVLAD method. As before the scatter plot compares the Temporal and Spatio-temporal

trained models. We observe that the action classes which perform significantly better with

the addition of spatial information are the same as the VideoGraphs method. There are

not many action classes that have similar performance to the Temporal alternative in the

top 50 classes. However, we can see that in general, the best performing classes are shifted

more toward the Spatio-temporal model indicating that in general, this method generalises

better on these classes.

As we have done for VideoGraphs, we plot a scatter plot of the verb groups and object

groups on the same plane for the ActionVLAD model seen in Figure 17. Again we observe

the ’cooking’ verb groups performing significantly well with the introduction of spacial

information as well as the ’running’ group. ’Sofa/Couch’, ’Floor’ & ’Vacuum’ are some of
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Figure 15: Scatter-plot of the Average Precision per Verb group (Green) & Object group
(Red) for the VideoGraphs temporal vs Spatio-temporal models

Figure 16: Comparing the Top 50 performing action classes of the ActionVLAD networks.
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Figure 17: Scatter-plot of the Average Precision per Verb group (Green) & Object group
(Red) for the ActionVLAD temporal vs Spatio-temporal models

the object group classes that perform relatively well. Not many groups for this method

perform similar to each other in the higher value region.

5.4.3 Non-Local Block

Finally, we investigate the relationship of the Non-Local block model trained on temporal

features and Spatio-temporal features. We do this by a scatter plot as we have done

above, depicted in Figure 18. An interesting insight from this figure is that the action

class ’Someone is awakening’ performs slightly better with the model trained on temporal

features. Nonetheless, the majority of the action classes benefit from the addition of spatial

information. Specifically, Holding a vacuum’, ’Someone is cooking something’ and ’tidying

up with a broom’ action classes benefit significantly from the spatial information.

Furthermore, we group the AP per verb and noun group to observe the behaviour in

a more general level depicted in Figure 19. From the AP per class, we had observed that

the action class ’Someone is awakening’ performs better on the model trained on temporal

features only although the verb group ’awaken’ which it forms part of performs slightly

better with spatial information. We observe again that the ’Cooking’ verb group performs
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Figure 18: Comparing the Top 50 performing action classes of the Non-Local block net-
works.

significantly better in the Spatio-temporal model.

5.5 Visualization of image regions with high activations

From the analysis above, we can observe that these methods outperform each other on

specific action classes and/or sub-groups of action classes. Therefore, we take a closer

look specifically at the ActionVLAD & VideoGraphs Spatio-temporal models. As we have

discussed, the ActionVLAD layer performs soft-assignment over cluster centroids while the

VideoGraphs method learns node representations. To some extent, we can think of the

ActionVLAD centroids and the VideoGraph nodes as learnt latent representations of visual

elements. To fully understand these learnt representations, we look at a way to visualise

them.

To visualise these nodes/centroids, we look at a way to backtrack high activations to an

image and it’s respective regions. We achieve this by using the Spatio-temporal features

we have extracted in our experiment phase which are of the form fi ∈ RBxCxTxWxH . With

the hyper-parameters of our experiments specifically, our feature vectors are of the form
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Figure 19: Scatter-plot of the Average Precision per Verb group (Green) & Object group
(Red) for the Non-Local Block temporal vs Spatio-temporal models

fi ∈ RBx1024x4x7x7 where 4 is the timestep, which represents an aggregation in groups of 8

frames performed by the I3D network

where T is the temporal dimension set at 4 containing an aggregation of features from

the 32 input frames grouped at a rate of 8 frames. The W & H dimension set both

at 7 in our experiments, represent the 8 successive images in a 7x7 grid ie. 49 regions.

When these features are fed into the network, we save the soft-assignment activations of

ActionVLAD and the similarity values from the Node Attention layer of VideoGraphs. This

will allow us to pinpoint, regions within these groups which have the highest similarity to

nodes/centroids. We keep only activations which have a 95% similarity. To finally visualise

these regions, we take the middle frame from the group with the highest activation & draw

a box around the image regions with 95% similarity or more. We perform this for all

images in the dataset and investigate some of these visualizations. Some clusters had a

very high number of samples obtained while others did not produce any outputs even at a

threshold of 75%. We have identified patterns in some of these visualizations.

The first node we visualise is node 25 from the ActionVLAD model trained on Spatio-

temporal features. This node had the highest amount of samples generated with a threshold
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of 95% similarity. From a manual investigation of the generated regions, we recognise that

most of the images contain individuals utilising a cup or something to hold water. With

these observations in mind, we intuitively associate this with the ’cup/glass/bottle’ object

class. This object class is used in conjunction with the ’Drink’, ’Hold’, ’Pour’, ’Put’, ’Take’

& ’Wash. From the samples, we can see that this centroid contains high activations when

exposed to regions of ’Drinking from a cup/glass/bottle’. Some samples of the images and

their respective high activation region are displayed in the top row of Figure 20

Our second node to visualise from the ActionVLAD model trained on Spatio-temporal

features is node 28. By manual investigation of the generated images/regions, we identify

that the regions with close similarity to this node contain individual utilising a laptop

device. Therefore, the object class that seems to be similar to this node is probably the

’laptop’ object group. The ’laptop’ object group is used in conjunction with the follow verb

groups ’Close’, ’Hold’, ’Open’, ’Put’, ’Take’, ’Watch’ & ’Work’. From observing the gener-

ated images, we can see numerous clear samples of ’Holding a Laptop’, ’Working/Playing

on a Laptop’ & ’Closing a laptop’ amongst others. Some of these samples are depicted in

the middle row of Figure 20.

The final node we visualise from the ActionVLAD model trained on Spatio-temporal

features is node 20. Again we manually investigate the generated images and identify and

that the samples contain mostly interactions with a handheld device mainly, controllers,

phones and cameras. The object class that is related to this is the ’phone/camera’, inter-

estingly enough there are no object class related to a game console controller, yet, it is still

closely associated with this node. The ’phone/camera’ object class is closely associated

with verb groups such as ’Hold’, ’Play’, ’Put’, ’Take’ & ’Talk’. We can see clear examples of

’Holding a phone/camera’, ’Playing with a phone/camera’ & ’Talking on a phone/camera’.

Similarly, we investigate the image regions which have a high activation with the nodes

from the VideoGraphs model trained on the Spatio-temporal feature set. The first Node

we investigate is node 37 which containing many samples of individuals cleaning an object.

We assosicate this node with the ’wash’ verb groups which is used in the vocabulary of the

action classes with the clothess’, ’towel’, ’window’, ’mirror’, ’cup/glass/bottle’ & ’hands’

object classes. We observe instances which we can identify was ’Washing something with

a towel’, ’Washing a cup/glass/bottle’ & ’Washing some clothes’. These samples can be

observed in the top row of Figure 21.

Finally, we also investigate Node 1 from the VideoGraphs models trained on the Spatio-

temporal feature set. The samples obtained contained actors lying or sitting on several
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Figure 20: Action VLAD Node Representation. Top row contains representation of
Node 25. Middle row contains the representation of Node 28 while the Bottom row
contains representations of Node 20.

objects in the scenes. This node seems to be representing more than one verb group and

object group. The ’lying’ & ’sitting’ verb classes are used in conjunction with similar object

classes such as ’chair’, ’floor’, ’bed’ and ’sofa/couch’. We observed numerous action classes

in the high activation regions of samples generated such as ’Sitting in a chair’, ’Lying on

a bed’ & ’sitting on the sofa/couch’. Some of samples are depicted in the bottom row of

Figure 21.

Figure 21: Video Graphs Node Representation. Top row contains representation of
Node 84 while the Bottom row contains representations of Node 1.
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6 Discussion

In this section we attempt to answer the research question presented in the beginning of the

research. ’Are ActionVLAD, Self-Attention & VideoGraph methods amenable to temporal

action localization in untrimmed videos? ’, ’Specifically, can we use these methods as part

of a model to temporally localize actions in videos on a per-frame level rather than video-

level? ’ and ’Given that we extract a temporal feature set and a Spatio-temporal feature set

from a video. Do models trained on the temporal feature set generalize differently than the

models trained on the Spatio-temporal feature set? ’.

The first question we attempt to answer is if ActionVLAD, Self-Attention & Video-

Graph methods are amenable to temporal action localization in untrimmed videos. This

question can easily be answered by the pipeline we have set up to incorporate these methods

into layers for a temporal localization network. We have successfully trained & evaluated

these networks with common practise techniques from research. We have successfully

shown that these methods perform well when applied to action localization of untrimmed

videos.

Our second question related to specifically including these methods in models to local-

ize actions on a per-frame level rather than video-level. Again the pipeline we developed

included these methods in a temporal localization network and was trained and evaluated

successfully. Secondly, we achieve per-frame classification by classifying every 32-frame seg-

ment over the entire dataset. Furthermore, these segment-level classifications are assigned

to the 32 individual frames.

To continue to understand if these methods learn any semantic representations from

our dataset, we visualised highly similar regions of images to centroids/nodes of the Ac-

tionVLAD & VideoGraphs methods. We have seen various examples of visualizations that

represent a more general representation than the action labels themselves. We have shown

through training & evaluating these models on a frame-level temporal localization dataset

that these models work well on the temporal localization problem.

We attempt to answer the final question relating to the different performance of the

model trained on either a temporal or Spatio-temporal feature set. We have shown in our

model the feature extraction step which includes the steps taken to extract such feature

sets from a video dataset. We show that some methods perform better than others when

exposed to different feature sets. Specifically, we found that while ActionVLAD was the

best performing method when trained on the Spatio-temporal feature set, VideoGraphs

performed significantly better than ActionVLAD on the temporal feature set.
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Additionally, we show that on the 157 labelled classes some methods perform slightly

better with temporal features while the majority performs better with the Spatio-temporal

features. On the other hand, when looking at the performance on a verb and object level we

found that some networks perform better in some groups than others and that all groups

perform equally or better than when trained on temporal features. However, there is some

classes highlighted above, that benefit little from the addition of the spatial information.

For example, we have seen that the VideoGraphs method perform well in ’cook’ group in

both temporal and Spatio-temporal models while the ’run’ group performs significantly

better on both ActionVLAD networks. This can be seen in the scatter plots above and

the horizontal bar graphs (Figures 12 & 14-19).

7 Conclusions

We successfully answered the three research questions we have presented in this research

by showing that ActionVLAD, Self-Attention & VideoGraphs are methods which can be

used for temporal localization of action in untrimmed videos. We have achieved this by

developing several temporal localization networks that use pre-trained 3D CNNs to extract

features from untrimmed videos and classify these features into actions. As well as being

able to perform a per-frame level classification of such video files. We designed 3 networks

that incorporate these methods as layers with two alternatives of each, one consuming

temporal only features and the other consuming Spatio-temporal features. We found that

ActionVLAD performs significantly better on the Charades dataset with 14.31% mAP

when trained on the Spatio-temporal feature set. While VideoGraphs obtains a 10.73%

mAP which performs better than the other methods when trained on the temporal feature

set. We compared these methods on a different grouping of labels and found some methods

perform better in certain groups. To further analyse the behaviour of the models, we

visualized image regions close to latent representations these methods learnt.
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and Paolo Emilio Barbano. Toward automatic phenotyping of developing

embryos from videos. IEEE Transactions on Image Processing, 14:1360–

1371, 2005.

[OMK+14] Sangmin Oh, Scott McCloskey, Ilseo Kim, Arash Vahdat, Kevin J. Cannons,

Hossein Hajimirsadeghi, Greg Mori, A. G. Amitha Perera, Megha Pandey,

36



and Jason J. Corso. Multimedia event detection with multimodal feature

fusion and temporal concept localization. Machine Vision and Applications,

25(1):49–69, Jan 2014.

[PR18] AJ Piergiovanni and Michael S Ryoo. Learning latent super-events to detect

multiple activities in videos. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 5304–5313, 2018.

[SCZ+17] Zheng Shou, Jonathan Chan, Alireza Zareian, Kazuyuki Miyazawa, and

Shih-Fu Chang. Cdc: Convolutional-de-convolutional networks for precise

temporal action localization in untrimmed videos. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pages 5734–

5743, 2017.

[SJYS15] Lin Sun, Kui Jia, Dit-Yan Yeung, and Bertram E Shi. Human action recogni-

tion using factorized spatio-temporal convolutional networks. In Proceedings

of the IEEE International Conference on Computer Vision, pages 4597–

4605, 2015.

[SVW+16] Gunnar A. Sigurdsson, Gül Varol, Xiaolong Wang, Ali Farhadi, Ivan Laptev,

and Abhinav Gupta. Hollywood in homes: Crowdsourcing data collection

for activity understanding. CoRR, abs/1604.01753, 2016.

[TBF+14] Du Tran, Lubomir D. Bourdev, Rob Fergus, Lorenzo Torresani, and

Manohar Paluri. C3D: generic features for video analysis. CoRR,

abs/1412.0767, 2014.

[TCLZ12] Y. Tian, L. Cao, Z. Liu, and Z. Zhang. Hierarchical filtered motion for

action recognition in crowded videos. IEEE Transactions on Systems, Man,

and Cybernetics, Part C (Applications and Reviews), 42(3):313–323, May

2012.

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez,  Lukasz Kaiser, and Illia Polosukhin. Attention is all you

need. In Advances in neural information processing systems, pages 5998–

6008, 2017.

37



[WFF+18] Chao-Yuan Wu, Christoph Feichtenhofer, Haoqi Fan, Kaiming He, Philipp
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