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1

I N T RO D U C T I O N

What makes a single image fundamentally different form a collection of images?

(a) Single image (b) Collection of successive images

Figure 1: The left is a still picture of a sportsman – one can easily tell that it is a track
and field sport. However, it is not that easy to guess what specific sport it is, actually.
May be it is long jump, disc throw, high jump, or something else. Only by considering
more images, on the right, you can conclude the answer‡.

It is often said that a picture is worth a thousand words. If that is so, then is a video
worth a thousand pictures or a million words? Look at the single image on the left of
figure 1, the first thought that comes to mind is a sportsman in one of the track and field
sports. A second look might tell you that it is probably a long jump or a high jump. To
make it easier, let’s agree that it is a long jump. And yet, this opens more questions. For
instance, the jump is successful or failed. Let us consider the rest of the images on the
right of figure 1 – please turn the page upside down. Now that you have seen the rest of
the images, why are we able to conclude the correct answer from the image collection on
the right but not from the single image on the left? In other words, what is the essential
difference between the left and the right? If the left is just a single image, while the right
is a collection of successive images, what does the latter carry more than the former?
Is it just more of that same; more observations of the same running person? Or is the
difference something more fundamental?

From the perspective of computer vision, an image is a digital signal encoding the
visual world around us, in a way that is comprehended by the computer. This digital
signal has three dimensions: height, width, and color. A video is also considered as
a digital signal. But compared to an image, it spans an extra dimension – that is the
time. As such, a video encapsulates a multitude of information more than a single
image. Having time in hand means having a much detailed and more refined view of
the perceived visual world. Using the single image of figure 1a, we can predict endless
possibilities of what will happen to the sportsman. He may succeed in the jump or may
fall. However, using a video, e.g. the collection of images in figure 1b, we are able to tell

‡

Theanswerishighjump
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I N T RO D U C T I O N

a much more precise story of the sportsman, compared to the single image. Consequently,
we would like to argue that time is the single most important, and most evident difference
between a mere image and a collection of images, i.e. a video.

This thesis is concerned with studying time, within the context of human actions
in videos. But why do we want to study time? One might argue that time brings a
profoundly novel dimension of information. So, studying time gives us a far better under-
standing of human actions in videos. Complementary to studying time, a comprehensive
understanding of its properties is needed. These properties include but are not limited to
the (a) arrow of time, (b) cyclicity (or repetition), (c) rate of change, (d) structure, and
last but not least (e) permutation. In the following, we emphasize on these properties,
one by one.

The first fundamental property is the arrow of time. Let us revisit the single image in
figure 1a. From the pose of the sportsman, you can probably tell that he is running. But
you cannot for sure tell if he is running forward or backward – only time can tell. That
is why it is important to study the arrow of time. There are countless opposite pairs of
actions where only time can tell the difference between each pair. For example, swipe
left v.s. swipe right, or open jar lid v.s. close jar lid.

Figure 2: The top left image tells us that there is a jockey riding a horse. But the entire
video, represented as an ordered collection of images, paints a much more clear picture,
because it provides us with an extra, yet fundamental, signal – that is time. Only by
considering time, important information about the video is revealed. For example, time
tells us that: (a) the horse is moving forward, not backward (arrow of time), (b) the horse
gait is gallop, not walk, trot, nor canter (structure of time), and (c) the horse is finishing
one complete cycle of galloping (cyclicity or repetition of time).

Consider the top left image in figure 2, it shows a jockey riding a horse. But can you
tell only from this image, what is the horse gait, and what is the periodic rate? The
entire video, represented as an ordered collection of images, paints a much more clear
picture, only because they provide us with an extra, yet fundamental, signal – that is
time. Only when considering time, important information about the video is revealed.
First, time tells us that the horse gait is gallop, not walk, trot, nor canter. Second, we can
deduct from the video that the gallop is cyclic locomotion. That is to say, the gallop gait
repeats itself exactly every nine successive images – notice the similarities in the horse
gait between the second and the tenth image. Given that the order of images is left to
right, then top to bottom, see how the second image and eleventh image are almost alike.
This property of time is called cyclicity, or repetition. Third, the rate of change in the

10



I N T RO D U C T I O N

horse gait from one image to another may tell us if the horse is about to change the gait
or is coming to a complete stop. Notice the rate of change between the first two top left
images, compared to that between the last two bottom-right ones. This property of time
is called the rate of change. While the aforementioned properties, namely arrow of time,
cyclicity, and rate of change are essential to understand time, they go beyond the scope
of this thesis. While these properties are worth mentioning, this thesis discusses other
aspects of time, which are discussed next.

How novel human activities can be recognized using previously learned ones?

Chapter 2 is concerned with how do we perceive novel visual evidences, and how do
we recognize them. Imagine yourself riding a horse, such as that of figure 2. But this
time, not as a jokey or equestrian, but rather as a zoo visitor. While you move from one
place to another, you encounter new animals, see novel creatures, and hear new sounds.
You will learn about these never-seen-before creature, and may memorize some of their
names in your memory. For example, you may now have seen and defined what donkeys,
lions, dogs, dears, ostriches, chickens may look like. Now, imagine you arrive at a new
place and encountered a novel animal. In a split second, your brain, to avoid confusion
and overcome uncertainties, will try to classify this animal as the closest look-alike from
your memory. So, if this novel animal is, let’s say, a kangaroo, here is the silent dialog
that will happen in your brain. You will say, well, on one hand, it has the head of a
donkey, or most properly a deer, but it is biped animal, so it is definitely, neither a donkey
nor deer. On the other hand, this novel animal is biped, and very similar to an ostrich, but
it does not have the head of the ostrich. This reasoning might go on for a while before
you start calling the new animal a new name, such as ostrich-with-deer-face. Similarly,
chapter 2 of this thesis looks into how do we recognize novel human events. It argues
that a novel one can be cased as weighted combination of a previously known events. For
instance, the human event of “baby shower” might be viewed as an event of “wedding
shower” merged with another event of “baby birthday”.

We are given a repository of test videos, each entails an event, like “birthday party”
or “dog show”. Also, we are given a set of textual queries describing these events.
For each query, the task is to retrieve, i.e. rank, the most related videos, based on the
semantic similarity between the query and the video contents. As none of the queries
are accessible during training, this learning problem is known as zero-shot. We propose
to learn a cross-modal feature space using external sources of knowledge, such that the
space makes it possible to correctly retrieve the videos in test time. To learn this space,
we rely on two external sources of data, namely the video repository of EventNet, and
the event description articles of WikiHow. These two sources are heterogeneous, thus
cannot be used directly for training. So, we notice that the categories of EventNet directly
corresponds to the article of WikiHow. Using this analogy, these two sources were ready
for training. Furthermore, we learn cross-modal neural embeddings between the visual
and the textual modality, such that for a certain event, the article and its correlated videos
fall closer to one another in the feature space. To learn the feature space, an off-the-shelf
distance metric, such as Euclidean or cosine, is used. Differently, we find that learning
the distance metric itself, along with the neural embeddings of the visual and textual
modalities, in an end-to-end fashion, is the optimal solution. Experiments are conducted

11



I N T RO D U C T I O N

on two benchmarks MED-13 and MED-14. In addition, analysis and comparisons are
made, where our method comfortably outperforms previous methods.

In the method of chapter 2, to represent a certain video, frames are uniformly sampled
and their features are extracted. The video-level features are simply the frame-level
counterparts, pooled over the temporal dimension. So, the temporal structure of each
video is clearly understated. This motivates us to pay attention to the temporal structure
of videos, and how to recognize it. Upon preliminary research, this problem appeared to
be much bigger than initially thought. For one, it is found that human motions in videos
are expressed at different levels of granularity, e.g. micro actions, atomic actions, unit
actions, actions, activities, and events. Accordingly, the thesis asks, for instance, what is
the difference in granularity between atomic actions and activities? Are actions more
coarse-grained or more fine-grained than activities? More importantly, the following
question is asked:

Is time structured? How to recognize such a structure in videos of human activities?

Figure 3: Can you guess what is the human activity in this picture?† A complex human
activity is analogous to a mosaic painting. The activity is made of small pieces, called
atomic actions. Each, by itself, does not tell the complete story of the activity. But only
when all are put together, these pieces paint a clear picture of the complex activity.

Look carefully at the picture in figure 3. It is full of small pieces, and full of colorful
details, much like a mosaic painting. Can you see a general pattern out of this picture?
Or can you tell that it shows a human doing an activity? Which activity is it? It might be
that there is no structure governing such pieces, after all. Now take one step back and
look at the big picture. Perhaps now you can tell which human activity is it†. If so, why
you were able to figure out the activity only in the second look? Maybe because we can
see the overall pattern or structure of the picture. A complex human activity in the video

†

Theansweriscookingdinner

12



I N T RO D U C T I O N

is analogous to a mosaic painting. It is made of small pieces, called atomic actions. Each
alone cannot tell the complete story. But only when all put together, these pieces paint a
clear picture of the activity.

In Chapter 3, the difference between short-range atomic actions and long-range human
activities is discussed. In addition, three important properties of the latter are outlined.
These properties are temporal composition, temporal order, and temporal extent. Take
for example the complex activity of “cooking meal”. Composition means that it can be
broken down into building blocks, called one-actions, e.g. “stir”, “wash”, “slice”. None
of which has an end goal by itself. But together, they make the complex activity more
meaningful. Order means that these one-actions exhibit temporal order, albeit week.
Usually, one washes the hands before start cooking. And the temporal extent means
that the temporal duration of the same one-action may vary from one video exemplar
to another. One person might take a little bit longer to wash hands than another person.
Existing methods fall short of addressing these three properties, combined. Timeception,
a novel neural network layer for temporal modeling, is proposed. Timeception uses
multi-scale kernels to tolerate the temporal extents of one-actions. Multi-scale is achieved
by either using different kernel sizes or different dilation rates. Additionally, Timeception
decomposes the kernel of typical 3D convolution into a newly proposed temporal-only
kernels. Since the temporal aspect of human activity is, arguably, the most important
among all other aspects, these temporal-only kernels are dedicated to model only the
temporal dimension. As such, the effect of temporal-only convolutions is a drastic
reduction in the computational cost of 3D convolutions. This enables Timeception to
live up to the computational demands of minute-long videos. Moreover, Timeception
is a modern and modular layer for temporal modeling. It can be stacked on top of 2D
or 3D CNNs alike. By conducting several experiments, the benefits of Timeception are
demonstrated, and the technical novelties are verified. Besides, Timeception outperforms
state-of-art methods on three benchmarks Charades, Breakfast, and MultiThumos.

It is concluded from chapter 3 that the temporal structure of complex activities is
weak. To model such a structure, Timeception is proposed, where the main building
blocks of Timeception are the temporal convolutions. The fact that these convolutions
are temporal means that the structure of time is envisioned as an arrow. Along which,
these convolutional operations try to recognize the temporal patterns. But the question is,
why do we cast time as an arrow? Can it take other forms or structures? If yes, what do
the structure of time look like? Graph, lattice, tree, or something else? Most importantly,
the next question is:

If time is structured, what is the ideal structure to represent it?

Chapter 4 tries to answer the question of how to ideally structure the time. But first, let
us start with the following idea. The visual world around us is full of objects, each with
a distinct shape or figure. The question is, if you look around the room you are in now,
can you see the time as one of these integrated objects? Definitely not. So, if time is an
agreed-upon concept that we use and experience in our daily life, why cannot we see
it, and does it have a specific shape? Does in fit is a certain pattern or a does it have
a unique mold? Is there a specific structure of time? And is it as simple as geometric
shapes, e.g. triangle, square, or circle? Or does time need a more complex structure to
be represented, such as trees, graphs, lattice, groups, or rings? In chapter 4, it is argued

13



I N T RO D U C T I O N

that to better recognize the human activities in videos, the time is better to be cast as a
graph, for the graph is the ideal structure to wrap the time of a seemingly endless human
activity in video.

It is concluded from chapter 4 that the temporal structure of complex activities is weak.
To model such a structure, VideoGraph is proposed as the ideal structure of time, where
the main building blocks of this structure are the graph nodes. The nodes stand for the
most discriminant visual evidence in a video of human action. In the graph structure, we
also have the graph edges, representing the most important relationships between the
visual evidence over time. While the graph structure succeeds in representing very long
temporal patterns in videos, it falls short of tolerating the permutations in such patterns.
So, to what extent is VideoGraph successful in tolerating the temporal perturbations of
complex activities? In other words, this thesis asks next a more profound question:

Is time permutable in human activities? And how to achieve permutation invariance
to recognize such activities?

(a) Get Food (b) Wash Cucumber (d) Dice Meat (e) Cook Vegetables (f) Wash Rice

Figure 4: A collection of images depicting the human activity of “cooking dinner”.

Permutation is another important property of time. Consider the steps of preparing
dinner, shown in the images of figure 4. It seems that some of the steps can be permuted
without affecting the end-goal of preparing the dinner. For instance, one person might
cook the rice before cooking the vegetables, another person might cook the meat first.
However, we should also point out that some steps cannot be permuted. For example,
one has to wash the cucumber, then cut it, and then cook it. Since real-life human
actions do not follow a strict temporal order, we raise the question, what is the most
suitable structure to represent time? Could it be a sequence, like arrays or lists, or a
diagrammatical illustration, such as graphs, or trees, or lattices, or something completely
different?

Chapter 5 focuses on a fundamental property of time, in the context of long-range
human activities in videos. This property is the perturbation in the temporal structure of
such activities. For example, a person might start the long-range activity of “make coffee”
by “add milk” then “add coffee” and end up with “pour sugar”. Another person might
start first with “add milk”, then “add coffee” and skip “pour sugar” altogether. These
perturbations over time require some tolerance, or invariance, from the methods that
learn to represent and classify the activities. To this end, a new temporal modeling layer
is devised, namely Permutation Invariant Convolution, PIC. PIC is guided by three design
principles i. invariance to permutation, ii. using shared kernels, and iii. respecting local
connectivity. In addition, PIC addresses the shortcomings of three existing approaches for
temporal modeling, namely vector-aggregation, self-attention, and convolution. Unlike

14



I N T RO D U C T I O N

vector aggregation and self-attention, PIC respects local connectivity, thus is able to
capture complex temporal patterns at multiple layers of abstractions. In contrast to
self-attention, the kernels in PIC are shared and are not inferred from the input signal.
Consequently, PIC is better than self-attention in detecting the most discriminant visual
evidence from the noisy videos of long-range activities. After the experiments are carried
out, it is concluded that PIC is better in modeling the complexities of long-range activities
than the competing methods. Besides, PIC outperforms other methods in recognizing
the activities of three benchmark Breakfast, MultiThumos, and Charades. Furthermore,
by conducting quantitative and qualitative analysis, the design principles of PIC are
thoroughly investigated, and their importance is confirmed.

Many neural models, such as those presented in chapters 2, 3, 4, and 5, are successful
in detecting and recognizing human activities. Albeit this success comes at a great price;
that is the high computational cost of such neural models. The main cause of this cost is
the necessity to densely sample frames or segments from the video when recognizing
its activity. That is because temporal redundancy, a fundamental problem of time, is
not addressed by the aforementioned models. As a remedy, the thesis looks into better
methods to handle the redundancy of visual signals across the time dimension. So, the
thesis asks the following question:

How to overcome the redundancy of time, for the efficient recognition of human
activities?

Chapter 6 sheds light on the task of understanding human activities in videos from a
perspective different from the previous chapters. Rather than recognizing such activities,
this chapter discusses the efficiency of already existing neural models in activity recogni-
tion. Generally, the model efficiency is materialized by four metrics, namely i. number
of learning parameters in millions, ii. number of floating point operations (FLOPs),
iii. feedforward time in milli-seconds, and iv. classification accuracy in percentage.
This chapter, however, focuses on the trade-off between only two metrics, which are
the FLOPs and the accuracy. In addition, TimeGate, a new method for the efficient
recognition of long-range activities in videos, is proposed. Using TimeGate, realizing the
efficiency is achieved by sampling the most representative segments from the activity’s
video. Then, only the sampled segments are considered for recognition, while all the
other segments are discarded. Consequently, the recognition accuracy is retained at a
fraction of the computational cost. TimeGate has two technical contributions. First,
thanks to a carefully crafted gating mechanism, TimeGate is fully differentiable. Thus, it
can be trained with existing video classifiers, such as 3D CNNs, in an end-to-end fashion.
Second, the gating mechanism in TimeGate is context-conditional, which is considerably
better for long-range activities. This is in contrast to the frame-conditional gating used by
other methods, such as SCSampler. Context-conditioning means that when sampling a
certain segment from a video, the visual evidence in both the segment and its context, i.e.
the surrounding segments, are considered. While segment-conditioning means that the
visual evidence of only the segment is used. In the end, in-depth analysis is conducted,
and the benefits of TimeGate are verified. Besides, using qualitative and quantitative are
experiments on three datasets, TimeGate outperforms related methods in reducing the
computational cost of recognizing the long-range activities.
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I N T RO D U C T I O N

With chapter 7, this thesis comes to its proper ending. In this chapter, we summarize
the lessons learned from the previous ones. Certainly, we emphasize on the importance of
leveraging external sources of knowledge to improve the detection of events in zero-short
learning (Chapter 2). In addition, we reiterate on the three properties of complex actions,
and how they are addressed by Timeception (Chapter 3). Also, we recall how important
it is to tolerate the temporal perturbations for better recognition of long-range activities
(Chapter 5). Furthermore, we demonstrate how temporal selection can drastically reduce
the high computational cost of neural models when recognizing minutes-long activities.
Orthogonal to the conclusion, we briefly discuss five research topics. Not only do these
topics remain open, but also they might forecast the progress in video understanding.
The five topics are as follows.
• New tasks: is video recognition the correct task to understand human activities? Or

other tasks are needed?
• Structured representation: can a single feature vector truly represent a human

activity? Or is there are need for structure-oriented video representation?
• Levels of human motion: what are the differences between atomic action, unit action,

one-action, action, activity, event ..., etc? What are the properties of each?
• Multiple modalities: is only the visual modality enough to understand videos? Or

text and sound are also needed?
• Semi-supervised learning: is supervised learning sustainable? If unsupervised learn-

ing is even realistic? Or is self-supervised learning the way to consider?

1.1 R E L AT E D W O R K

There is a huge body of literature on video understanding, in general, and action recog-
nition, in particular. Historically, motion in videos is represented as feature vectors
using hand-crafted extractors. In static images, these extractors encode local points
of interests, i.e. keypoints. An examples of such methods are SIFT [25], SRUF [9]
and HOG [25]. Other extractors are more geared towards encoding motion in videos,
for example DT [169], IDT [170] or optical flow [65]. In addition, vector aggregation
methods are use to pool frame-based features and arrive at the video-level counterpart,
for example BoVW [131], FV [145], VLAD [8]. To classify the actions represented by
the aforementioned features, methods use feature classifiers, such as SVM [139,156] and
MLP [127]. While the majority of literature depend on the appearance images, i.e. RGB
images, as the main source of data input, other sources are considered, such as optical
flow [39], dynamic images [13], depth maps [167], and infrared images.

Recently, deep learning has successfully been employed to understand and recognize
objects in images. The overwhelming majority of literature make use of Convolutional
Neural Networks (CNNs) [40, 41, 105] as the de facto method of feature representation.
CNNs are successful in detecting visual patterns in the spatial dimensions of images [62,
98]. Soon, they are extended to understand videos, by complementing the temporal
dimension with the spatial counterparts. As a result, a new family of CNNs is devised,
namely 3D CNNs [81, 158]. For action understanding and recognition, many successful
methods stem from 3D CNNs, such as C3D [60], I3D [15], TSN [173], S3D [159], Non-
local Networks [175], and many others. Complementary to CNNs, methods have been

16



1.2 L I S T O F P U B L I C AT I O N S

proposed for temporal modeling of visual signal in videos. Examples are LSTM [107,
108], context gating [118], temporal segments [104], temporal convolutions [104], and
feature banks [179].

The success of deep learning could not be possible without large-scale annotated
datasets. Therefore, a large body of literature is dedicated to proposing and studying
such datasets. In video understanding, actions and activities of these datasets span
a wide spectrum of topics, such as sports, cooking, instructions, consumer, video-
logging, activities of daily living, movies, TV series, etc. Examples of these datasets
are UCF101 [148], Sports1M [90], Thumos [77], and ActivityNet [64]. For cooking,
Breakfast [99], YouCookII [195], Epic-Kitchens [26], and MPII-Cooking [134] are good
examples. For the interaction of human-human or human-object, there exist datasets such
as Charades [144], Kinetics [91], YouTube8M [6], EventNet [187], FCVID [86], and
YFCC100M [155]. Movies and TV series are a good source of harvesting video datasets.
A few examples are Hollywood [113], HMDB [100], AVA [52], MPII-MD [133], and
M-VAD [132].

1.2 L I S T O F P U B L I C AT I O N S

• Chapter 2 is based on “Unified Embedding and Metric Learning for Zero-Exemplar
Event Detection”, published in Computer Vision and Pattern Recognition (CVPR),
2017 [72], by Noureldien Hussein, Efstratios Gavves and Arnold W. M. Smeulders.

Contribution of authors

Noureldien Hussein: all aspects,
Efstratios Gavves: guidance and technical advice,
Arnold W. M. Smeulders: supervision and insight.

• Chapter 3 is based on “TimeCeption for Complex Action Recognition”, published
in Computer Vision and Pattern Recognition (CVPR), 2019 [72], by Noureldien
Hussein, Efstratios Gavves and Arnold W. M. Smeulders.

Contribution of authors

Noureldien Hussein: all aspects,
Efstratios Gavves: guidance and technical advice,
Arnold W. M. Smeulders: supervision and insight.

• Chapter 4 is based on “VideoGraph: Recognizing Minutes-Long Human Ac-
tivities in Videos”, published in International Conference on Computer Vision
Workshop (ICCV-W), 2019, in submission to British Machine Vision Conference
(BMVC), 2020 [74], by Noureldien Hussein, Efstratios Gavves and Arnold W. M.
Smeulders.

Contribution of authors

Noureldien Hussein: all aspects,
Efstratios Gavves: guidance and technical advice,
Arnold W. M. Smeulders: supervision and insight.
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• Chapter 5 is based on “Permutation Invariant Convolution for Recognizing Long-
range Activities”, in submission to European Conference on Computer Vision
(ECCV), 2020 [75], by Noureldien Hussein, Efstratios Gavves and Arnold W. M.
Smeulders.

Contribution of authors

Noureldien Hussein: all aspects,
Efstratios Gavves: guidance and technical advice,
Arnold W. M. Smeulders: supervision and insight.

• Chapter 6 is based on “TimeGate: Conditional Gating of Segments in Long-range
Activities”, in submission to European Conference on Computer Vision (ECCV),
2020 [76], by Noureldien Hussein, Mihir Jain and Babak Ehteshami Bejnordi.

Contribution of authors

Noureldien Hussein: all aspects,
Mihir Jain: guidance and technical advice,
Babak Ehteshami Bejnordi: guidance and technical advice.
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2

U N I F I E D E M B E D D I N G A N D M E T R I C L E A R N I N G F O R
Z E RO - E X E M P L A R E V E N T D E T E C T I O N

2.1 I N T RO D U C T I O N

TRECVID Multimedia Event Detection (MED) [125, 126] is a retrieval task for event
videos, with the reputation of being realistic. It comes in two flavors: few-exemplar and
zero-exemplar, where the latter means that no video example is known to the model.
Although expecting a few examples seems reasonable, in practice this implies that the
user must already have an index of any possible query, making it very limited. In this
work, we focus on event video search with zero exemplars.

Retrieving videos of never-seen events, such as “renovating home”, without any video
exemplar poses several challenges. One challenge is how to bridge the gap between the
visual and the textual semantics [53, 55, 84]. One approach [16–18, 84, 111, 114] is to
learn a dictionary of concept detectors on external data source. Then, scores for test
videos are predicted using these detectors. Test videos are then ranked and retrieved
accordingly. The inherent weakness of this approach is that the presentation of a test
video is reduced to a limited vocabulary from the concept dictionary. Another challenge
is how to overcome the domain difference between training and test events. While
Semantic Query Generation (SQG) [17, 18, 84, 85] mitigates this challenge by extracting
keywords from the event query, it does not address how relevant these keywords are to
the event itself. For example, keyword “person” is not relevant to event “car repair” as it
is to “flash mob gathering”.

Our entry to zero-exemplar events is that they generally have strong semantic correla-
tions [44, 116] with other possibly seen events. For instance, the novel event “renovating
home” is related to “fit wall tiles”, “remove drywall”, or even to “paint door”. Novel
events can, therefore, be casted on a repository of prior events, for which knowledge
sources in various forms are available beforehand, such as the videos, as in Event-
Net [187], or articles, as in WikiHow [1]. Not only do these sources provide video
examples of a large –but still limited– set of events, but also they provide an association
of text description of events with their corresponding videos. A text article can describe
the event in words: what is it about, what are the details and what are the semantics. We
note that such a visual-textual repository of events may serve as a knowledge source, by
which we can interpret novel event queries.

For Zero-exemplar Event Detection (ZED), we propose a neural model with the
following novelties:

Published in Computer Vision and Pattern Recognition (CVPR), 2017 [72]
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Figure 5: We pose the problem of zero-exemplar event detection as learning from a
repository of pre-defined events. Given video exemplars of events “removing drywall” or

“fit wall”, one may detect a novel event “renovate home” as a probability distribution
over the predefined events.

1. We formulate a unified embedding for multiple modalities (e.g. visual and textual)
that enables a contrastive metric for maximum discrimination between events.

2. A textual embedding poses the representation of a novel event as a probability of
predefined events, such that it spans a much larger space of admissible expressions.

3. We exploit a single data source, comprising pairs of event articles and related videos.
A single source rather enables end-to-end learning from multi-modal individual pairs.

We empirically shows that our novelties result in performance improvement. We
evaluate the model on TRECVID Multimedia Event Detection (MED) 2013 [125] and
2014 [126]. Our results show significant improvement over the state-of-the-art.

2.2 R E L AT E D W O R K

We identify three families of methods for ZED, as in figure 6 (a), (b) and (c).

Visual Embedding and Textual Retrieval. As in figure 6(a), given a video vi repre-
sented as x ∈ X and a related text t represented as y ∈ Y. Then, a visual model fV is
trained to project x as yv ∈ Y such that the distance is minimized between (yv, y). In test
time, video ranking and retrieval is done using distance metric between the projected test
video yt and test query representation y.

VideoStory [54, 56] project the visual feature x of a web video v into term-vector
representation y of the video’s textual title t. However, during training, the model
makes use of the text query of the test events to learn better term-vector representation.
Consequently, this limits the generalization for novel event queries.

Textual Embedding and Visual Retrieval. As in figure 6(b), a given text query t is
projected into xt ∈ X using pre-trained or learned language model fT .
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2.2 R E L AT E D W O R K
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Figure 6: Three families of methods for zero-exemplar event detection: (a), (b) and (c).
They build on top of feature representations learned a priori (i.e. initial representations),
such as CNN features x for a video v or word2vec features y for event text query t. In
a post-processing step, the distance θ is measured between the embedded features. In
contrast, our model rather falls in a new family, depicted in (d), for it learns unified
embedding with metric loss using single data source.

TagBook [115] makes use of freely-available weakly-tagged web videos. Then it
propagates tags to test videos from its nearest neighbors. Methods [16–18, 84, 111] have
similar approach. Given a text query t, Semantic Query Generation (SQG) extracts N
most related concepts {ci, i ∈ N} to the test query. Then, pre-trained concept detectors
predict probability scores {si, i ∈ N} for a test video v. Aggregating these probabilities
results in the final video score sv, upon which videos are ranked and retrieved. [18] learns
weighted averaging.

The shortcoming of this family is that expressing a video as probability scores of few
concepts is under-representation. Any concept that exists in the video but is missing in
the concept dictionary is thus unrepresented.

Visual-Textual Embedding and Semantic Retrieval. As in figure 6(c), visual fV and
textual fT models are trained to project both of the visual x and textual y features into
a semantic spaceZ. During test, ranking score is the distance between the projections
zv, zt in the semantic spaceZ.

[180] projects video concepts into a high-dimensional lexicon space. Separately, it
projects concept-based features to the space, which overcomes the lexicon mismatch
between the query and the video concepts. [32] embeds a fusion of low and mid-level
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Figure 7: Model overview. Using datasetDz of M event categories and N videos. Each
event has a text article and a few videos. Given a video x with text title k, belonging
to an event with article t, we extract features x, yk, yt respectively. At the top, network
fT learns to classify the title feature yk into one of M event categories. In the middle,
we borrow the network fT to embed the event article’s feature yt as zt ∈ Z. Then, at
the bottom, the network fV learns to embed the video feature x as zv ∈ Z such that the
distance between (zv, zt) is minimized, in the learned metric spaceZ.

visual features into distributional semantic manifold [119, 120]. In a separate step, it
embeds text-based concepts into the manifold.

The third family, see figure 6(c), is superior to the others, see figure 6(a), (b). However,
one drawback of [32, 180] is separately embedding both the visual and textual features
zv, zt. This leads to another drawback, having to measure the distance between (zv, zt) in
a post-processing step (e.g. cosine similarity).

Unified Embedding and Metric Learning Retrieval. Our method rather falls into
a new family, see figure 6(d), and it overcomes the shortcomings of [32, 180] by the
following. It is trained on a single data source, enabling a unified embedding for features
of multiple modalities into a metric space. Consequently, the distance between the
embedded features is measured by the model using the learned metric space.

Auxiliary Methods. Independent to the previous works, the following techniques have
been used to improve the results: self-paced reranking [82], pseudo-relevance feed-
back [83], event query manual intervention [7], early fusion of features (action [36, 146,
157, 161, 169] or acoustic [89, 101, 122]) or late fusion of concept scores [56]. All these
contributions may be applied to our method.

Visual Representation. ConvNets [63, 98, 105, 147] provide frame-level representation.
To tame them into video-level counterpart, literature use: i- frame-level filtering [43]
ii- vector encoding [8, 145] iii- learned pooling and recounting [111, 117] iv- average
pooling [54, 56]. Also, low-level action [161, 169], mid-level action [146, 157] or
acoustic [89, 101, 122] features can be used.
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2.3 M E T H O D

Textual Representation. To represent text, literature use: i- sequential models [150],
ii- continuous word-space representations [103, 120], iii- topic models [14, 27], and iv-
dictionary-space representation [56].

2.3 M E T H O D

2.3.1 Overview

Our goal is zero-exemplar retrieval of event videos with respect to their relevance to a
novel textual description of an event. More specifically, for the zero-exemplar video
datasetDz = {vz

i }, i = 1, . . . , L and given any future, textual event description tz, we want
to learn a model f (·) that ranks the videos vz

i according to the relevance to tz, namely:

tz : vz
i � vz

j → f (vz
i , tz) > f (vz

j, tz). (2.1)

2.3.2 Model

Since we focus on zero-exemplar setting, we cannot expect any training data directly
relevant to the test queries. As such, we cannot directly optimize our model for the
parameters WT , WV in eq. (2.3). In the absence of any direct data, we resort to external
knowledge databases. More specifically, we propose to cast future novel query descrip-
tions as a convex combination of known query descriptions in external databases, where
we can measure their relevance the database videos.

We start from a datasetDz =
{
vi, ki, l j, t j

}
, i = 1, . . . , N, j = 1, . . . , M organized by

an event taxonomy, where we do not neither expect nor require the events to overlap with
any future event queries. The dataset is composed of M events. Each event is associated
with a textual, article description of the event, analyzing different aspects of it, such
as: (i) the typical appearance of subjects and objects (ii) it’s procedures (iii) the steps
towards completing task associated with it. The dataset contains in total N videos, with vi
denoting the i-th video in the dataset with metadata ki, e.g. the title of the video. A video
is associated with an event label li and the article description ti of the event it belongs to.
Since multiple videos belong to the same event, they share the article description of such
event.

The ultimate goal of our model is zero-exemplar search for event videos. Namely,
provided unknown text queries by the user, we want to retrieve those videos that are
relevant. We illustrate our proposed model during training in figure 7. The model is
composed of two components, a textual embedding fT (·), a visual embedding fV(·).
Our ultimate goal is the ranking of videos, vi � v j � vk with respect to their relevance to
a query description, or in pairwise terms vi � v j, v j � vk and vi � vk.

Let us assume a pair of videos vi, v j and query description t, where video vi is more
relevant to the query t than v j. Our goal is a model that learns to put videos in the correct
relative order, namely (vi, t) � (v j, t). This is equivalent to a model that learns visual-
textual embeddings such that dtv

i < dtv
j , where dtv

i is the distance between visual-textual
embeddings of (vi, t), dtv

j is the same for (v j, t). Since we want to compare distances
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between pairs (vi, t), (v j, t), we pose the learning of our model as the minimization of a
contrastive loss [23]:

Lcon =
1

2N

N∑
i=1

hi · d2
i + (1 − hi)max(1 − di, 0)2, (2.2)

di = ‖ fT (ti; WT ) − fV(vi; WV)‖2, (2.3)

where fT (ti; WT ) is the projection of the query description ti into the unified metric
spaceZ parameterized by WT , fV(vi; WV) is the projection of a video vi onto the same
spaceZ parameterized by WV and hi a target variable that equals to 1 when the i-th video
is relevant to the query description ti and 0 otherwise. Naturally, to optimize eq. (2.2),
we first need to define the projections fT (·; WT ) and fV(·; WV) in eq. (2.3).

Textual Embedding. The textual embedding component of our model, fT (·; WT ), is
illustrated in figure 7 (top). This component is dedicated to learn a projection of a textual
input –including any future event queries t– on to the unified spaceZ. Before detailing
our model fT , however, we note that that the textual embedding can be employed not
only with event article descriptions, but also with any other textual information that might
be associated to the dataset videos, such as textual metadata. Although we expect the
video title not to be as descriptive as the associated article, they may still be able to offer
some discriminative information as previously shown [54,56] which can be associated to
the event category.

We model the textual embedding as a shallow (two layers) multi-layer perceptron
(MLP). For the first layer we employ a ReLU nonlinearity. The second layer serves a
dual purpose. First, it projects the article description of an event on the unified space
Z. This projection is category-specific, namely different videos that belong to the same
event will share the projection. Second, it can project any video-specific textual metadata
into the unified space. We, therefore, propose to embed the title metadata ki, which
is uniquely associated with a video, not an event category. To this end, we opt for
softmax nonlinearity for the second layer, followed by an additional logistic loss term
to penalized misprediction of titles mi with respect to the video’s event label y j

i , namely

Llog =
N∑

i=1

M∑
j=1

−y j
i log f j

T
(ki; WT ). (2.4)

Overall, the textual embedding f j
T

is trained with a dual loss in mind. The first loss
term, see eq. (2.2) (2.3) takes care that the final network learns event-relevant textual
projections. The second loss term, see eq. (2.4), takes care that the final network does
not overfit to the particular event article descriptions. The latter is crucial because the
event article descriptions inDz will not overlap with the future event queries, since we
are in a zero-exemplar retrieval setting. As such, training the textual embedding to be
optimal only for these event descriptions will likely result in severe overfitting. Our goal
and hope is that the final textual embedding model fT will capture both event-aware and
video-discriminative textual features.
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2.4 E X P E R I M E N T S

Visual Embedding. The visual embedding component of our model, fV(·; WV), is
illustrated in figure 7 (bottom). This component is dedicated to learn a projection from
the visual input, namely the videos in our zero-exemplar dataset Dz, into the unified
metric space Z. The goal is to project the videos belonging to semantically similar
events; project them into a similar region in the space. We model the visual embedding
fV(vi; WV) using a shallow (two layers) multi-layer perceptron with tanh nonlinearities,
applied to any visual feature for video vi.

End-to-End Training. At each training forward-pass, the model is given a triplet of
data inputs, an event description ti, a related video vi and video title ki. From eq. (2.3)
we observe that the visual embedding fV(vi; WV) is encouraged to minimize its distance
with the output of the textual embedding fT (ti; WT ). In the end, all the modules of
the proposed model are differentiable. Therefore, we train our model in an end-to-end
manner by minimizing the following objective

arg min
WV,WT

LU,

LU = Lcon +Llog.
(2.5)

For the triplet input (vi, ti, ki), we rely on external representations, since our ultimate goal
is zero-exemplar search. Strictly speaking, a visual input vi is represented as CNN [63]
feature vector, while textual inputs ti, ki are represented as LSI [27] or Doc2Vec [103]
feature vectors. However, given that these external representations rely on neural network
architectures, if needed, they could also be further fine-tuned. We choose to freeze CNN
and Doc2Vec modules to speed up training. Finally, in this work, we refer to our main
model with unified embedding, as modelU.

Inference. After training, we fix the parameters (WV, WT ). At test time, we set our
function f (·) from eq. (2.1) to be equivalent to the distance function from eq. (2.3).
Hence, at test time, we compute the Euclidean distance in the learned metric spaceZ
between the embeddings (zv, zt) of test video v and novel event description t, respectively.

2.4 E X P E R I M E N T S

2.4.1 Datasets

Before delving into the details of our experiments, first we describe the external knowl-
edge sources we use.

Training dataset. We leverage videos and articles from publicly available datasets.
EvenNet [187] is a dataset of ∼90k event videos, harvested from YouTube and categorized
into 500 events in hierarchical form according to the events’ ontology. Each event
category contains around 180 videos. Each video is coupled with a text title, few tags
and related event’s ontology.

We exploit the fact that all events in EventNet are harvested from WikiHow [1] – a
website for How-To articles covering a wide spectrum of human activities. For instance:
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“How to Feed a Dog” or “How to Arrange Flowers”. Thus, we crawl WikiHow to get the
articles related to all the events in EventNet.

Test dataset. As the task is zero-exemplar, the test sets are different from the training.
While EventNet serves as the training, the following serve as the test: TRECVID MED-
13 [125] and MED-14 [125]. In details, they are datasets of videos for events. They
comprise 27k videos. There are two versions, MED-13 and MED-14 with 20 events for
each. Since 10 events overlap, the result is 30 different events in total. Each event is
coupled with short textual description (title and definition).

2.4.2 Implementation Details

Video Features. To represent a video v, we uniformly sample a frame every one second.
Then, using ResNet [63], we extract pool5 CNN features for the sampled frames.
Then, we average pool the frame-level features to get the video-level feature xv. We
experiment different features from different CNN models: ResNet (prob, fc1000),
VGG [147] (fc6, fc7), GoogLeNet [152] (pool5, fc1024), and Places365 [194]
(fc6, fc7,fc8) except we find ResNet pool5 to be the best. We only use ResNet
pool5 and we don’t fuse multiple CNN features.

Text Features. We choose topic modeling [14,27], as it is well-suited for long (and some-
times noisy) text articles. We train LSI topic model [27] on Wikipedia corpus [2]. We ex-
periment different latent topics ranging from 300 to 6000, expect we found 2500 to be the
best. Also, we experiment other textual representations as LDA [14], SkipThoughts [94]
and Doc2Vec [103]. To extract a feature from an event article k or video title t, first we
preprocess the text using standard MLP steps: tokenization, lemmatization and stemming.
Then, for k, t we extract 2500-D LSI features yk, yt, respectively. The same steps apply to
MED text queries.

Model Details. Our visual and textual embeddings fV(·), fT (·) are learned on top of
the aforementioned visual and textual features (xv, yk, yt). fT (·) is a 1-hidden layer
MLP classifier with ReLU for hidden, softmax for output, logistic loss and
2500-2500-500 neurons for the input, hidden, and output layers, respectively. Simi-
larly, fV(·) is a 1-hidden layer MLP regressor with ReLU for hidden, contrastive
loss and 2048-2048-500 neurons for the input, hidden, and output layers, respectively.
Our code is made public to support further research.

2.4.3 Textual Embedding

Here, we qualitatively demonstrate the benefit of the textual embedding fT (·). Figure 8
shows the similarity matrix between MED and EventNet events. Each dot represents how
a MED event is similar to EventNet events. It shows that our embedding (right) is better
than LSI (left) in mapping MED to EventNet events. For example, LSI wrongly maps “9:
getting a vehicle unstuck” to “256: launch a boat” while our embedding correctly maps

github.com/noureldien/unified_embedding
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Figure 8: Our textual embedding (right) maps MED to EventNet events better than LSI
features (left). Each dot in the matrix shows the similarity between MED and EventNet
events.

it to “170: drive a car”. Also, our embedding maps with higher confidence than LSI, as
in “16: doing homework or study”.
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Figure 9: For 20 events of MED-14, our textual embedding (right) is more discriminant
than the LSI feature representation (left). Each dot in the matrix shows how similar an
event to all the others.

Figure 9 shows the similarity matrix for MED events, where each dot represents
how related any MED event to all the others. Our textual embedding (right) is more
discriminant than on the LSI feature representation (left). For example, LSI representation
shows high semantic correlation between events “34: fixing musical instrument” and
“40: tuning musical instrument”, while our embedding discriminate them.

Next, we quantitatively demonstrate the benefit of the textual embedding fT (·). In
contrast to the main model, see section 2.3, we investigate baseline modelV, where we
discard the textual embedding fT (·) and consider only the visual embedding fV(·). We
project a video v on the LSI representation y of the related event t. Thus, this baseline
falls in the first family of methods, see figure 6(a). It is optimized using mean-squared
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Figure 10: We visualize the results of video embedding using the unified embedding
modelU and baselines modelV, modelS. Each sub-figure shows how discriminant the
representation of the embedded videos. Each dot represents a projected video, while
each pentagon-shape represents a projected event description. We use t-SNE to visualize
the result.

error (MSE) loss LVmse, see eq. 2.6. The result of this baseline is reported in section 2.5,
table 1.

LVmse =
1
N

N∑
i=1

‖yi − fV(vi; WV)‖22. (2.6)

Also, we train another baseline modelC, which is similar to the aforementioned V

except instead of using MSE loss LVmse, see eq. (2.6), it uses contrastive loss LCcon, as
follows:

LCcon =
1

2N

N∑
i=1

hi · d2
i + (1 − hi)max(1 − di, 0)2,

di = ‖yi − fV(vi; WV)‖2.

(2.7)

2.4.4 Unified Embedding and Metric Learning

In this experiment, we demonstrate the benefit of the unified embedding. In contrast to
our model presented in section 2.3, we investigate baseline modelS, where this baseline
does not learn joint embedding. Instead, it separately learns visual fV(·) and textual
fT (·) projections. We model these projections as a shallow (2-layer) MLP trained to
classify the data input into 500 event categories, using logistic loss, same as eq. (2.4).

We conduct another experiment to demonstrate the benefit of learning metric space. In
contrast to our model presented in section 2.3, we investigate baseline modelN , where we
discard the metric learning layer. Consequently, this baseline learns the visual embedding
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is a shallow (2 layers) multi-layer perceptron with tanh non linearities. Also, we replace
the contrastive loss Lc, see eq. (2.2) with mean-squared error loss Lmse, namely

LNmse =
1
N

N∑
i=1

‖ fT (ti; WT ) − fV(vi; WV)‖22. (2.8)

During retrieval, this baseline embeds a test video vi and novel text query ti as fea-
tures zv, zt onto the common spaceZ using textual and visual embeddings fT (·), fV(·),
respectively. However, in a post-processing step, retrieval score si for the video vi is
the cosine distance between (zv, zt). Similarly, all test videos are scored, ranked and
retrieved. The results of the aforementioned baselines modelS and modelN are reported
in table 1.

Comparing Different Embeddings. In the previous experiments, we investigated
several baselines of the unified embedding (modelU), namely visual-only embedding
(modelV), separate visual-textual embedding (modelS) and non-metric visual-textual
embedding (modelN ). In a qualitative manner, we compare the results of such em-
beddings. As shown in figure 10, we use these baselines to embed event videos of
MED-13 and MED-14 datasets into the corresponding spaces. At the same time,
we project the textual description of the events on the same space. Then, we use t-
SNE [112] to visualize the result on 2D manifold. As seen, the unified embedding, see
sub-figures 10(c), 10(f) learns more discriminant representations than the other baselines,
see sub-figures 10(a), 10(b), 10(d) and 10(e). The same observation holds for both
MED-13 and MED-14 datasets.

2.4.5 Mitigating Noise in EventNet

Based of quantitative and qualitative analysis, we conclude that EventNet is noisy. Not
only videos are unconstrained, but also some of the video samples are irrelevant to their
event categories. EvenNet dataset [187] is accompanied by 500-category CNN classifier.
It achieves top-1 and top-5 accuracies of 30.67% and 53.27%, respectively. Since events
in EventNet are structured as an ontological hierarchy, there is a total of 19 high-level
categories. The classifier achieves top-1 and top-5 accuracies of 38.91% and 57.67%,
respectively, over these high-level categories.

Based on these observations, we prune EventNet to remove noisy videos. To this end,
first we represent each video as average pooling of ResNet pool5 features. Then, we
follow the conventional 5-fold cross validation with 5 rounds. For each round, we split
the dataset into 5 subsets, 4 subsetsVt for training and the lastVp for pruning. Then we
train a 2-layer MLP for classification. After training, we forward-pass the videos ofVp
and rule-out the mis-classified ones.

The intuition behind pruning is that we rather learn salient event concepts using less
video samples than learn noisy concepts with more samples. Pruning reduced the total
number of videos by 26%, from 90.2k to 66.7k. This pruned dataset is all what we use in
our experiments.
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2.4.6 Latent Topics in LSI

When training LSI topic model on Wikipedia corpus, a crucial parameter is the number
of latent topics K the model constructs. We observe improvements in the performance
directly proportional to increasing K. The main reason that the bigger the value of K, the
more discriminant the LSI feature is. Figure 11 confirms our understanding.
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Figure 11: Similarity matrix between LSI features of MED-14 events. The more the latent
topics (K) in LSI model, the higher the feature dimension, and the more discriminant the
feature.

2.5 R E S U LT S

Evaluation metric. Since we are addressing, in essence, an information retrieval task,
we rely on the average precision (AP) per event, and mean average precision (mAP)
per dataset. We follow the standard evaluation method as in the relevant literature
[88, 125, 126].

Comparing against model baselines. In table 1, we report the mAP score of our model
baselines, previously discussed in the experiments, see section 2.4. The table clearly
shows the marginal contribution of each of novelty for the proposed method.

Baseline Loss Metric fV(·) fT (·) MED13 MED14

modelV LVmse (2.6) 7 3 7 11.90 10.76
modelC LCcon (2.7) 3 3 7 13.29 12.31
modelS Llog (2.4) 7 3 3 15.60 13.49
modelN LNmse (2.8) 7 3 3 15.92 14.36

modelU LU (2.5) 3 3 3 17.86 16.67

Table 1: Comparison between the unified embedding and other baselines. The unified
embedding modelU achieves the best results on MED-13 and MED-14 datasets. Metric
means if the baseline uses metric-learning or not.
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Comparing against related work. We report the performance of our method, the unified
embedding modelU on TRECVID MED-13 and MED-14 datasets. When compared
with the related works, our method improves over the state-of-the-art by a considerable
margin, as shown in table 2 and figure 12.

Method MED13 MED14

TagBook [115] ToM '15 12.90 05.90
Discovary [16] ICAI '15 09.60 –
Composition [17] AAAI '16 12.64 13.37
Classifiers [18] CVPR '16 13.46 14.32
VideoStory† [56] PAMI '16 15.90 05.20
VideoStory∗ [56] PAMI '16 20.00 08.00

This Work (modelU) 17.86 16.67

Table 2: Performance comparison between our model and related works. We report the
mean average precision (mAP%) for MED-13 and MED-14 datasets.
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Figure 12: Event detection accuracies: per-event average precision (AP%) and per-
dataset mean average precision (mAP%) for MED-13 and MED-14 datasets. We compare
our results against TagBook [115], Discovary [16], Composition [17], Classifiers [18]
and VideoStory [56].

It is important to point out that VideoStory† uses only object feature representation, so
its comparable to our method. However, VideoStory∗ uses motion feature representation
and expert text query (i.e. using term-importance matrix H in [56]). To rule out
the marginal effect of using different datasets and features, we train VideoStory and
report results in table 3. Clearly, CNN features and video exemplars in the training set
can improve the model accuracy, but our method improves against VideoStory when
trained on the same dataset and using the same features. Other works (Classifiers [18],
Composition [17]) use both image and action concept classifiers. Nonetheless, our
method improves over them using only object-centric CNN feature representations.
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Method Training Set CNN MED14

VideoStory VideoStory46k [56] GoogleNet 08.00
VideoStory FCVID [87] GoogleNet 11.84
VideoStory EventNet [187] GoogleNet 14.52
VideoStory EventNet [187] ResNet 15.80

This Work EventNet [187] ResNet 16.67

Table 3: Our method improves over VideoStory when trained on the same dataset and
using the same feature representation.

2.6 C O N C L U S I O N

In this work, we presented a novel approach for detecting events in unconstrained web
videos, in a zero-exemplar fashion. Rather than learning separate embeddings form
cross-modal datasets, we proposed a unified embedding where several cross-modalities
are jointly projected. This enables end-to-end learning. On top of this, we exploited
the fact that zero-exemplar is posed as retrieval task and proposed to learn metric space.
This enables measuring the similarities between the embedded modalities using this very
space.

We experimented the novelties and demonstrated how they contribute to improving
the performance. We complemented this by improvements over the state-of-the-art by
considerable margin on MED-13 and MED-14 datasets.

However, the question still remains, how can we discriminate between these two MED
events “34: fixing musical instrument” and “40: tuning musical instrument”. We would
like to argue that temporal modeling for human actions in videos is of absolute necessity
to achieve such fine-grained event recognition. In future research, we would like to focus
on human-object interaction in videos and how to model it temporally.
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3.1 I N T RO D U C T I O N

In ordinary life, activities of daily living pop up frequently. Our conversations include
actions like “cooking a meal” or “cleaning the house” much more frequently than actions
like “jumping” or “cutting a cucumber”. The latter, which we call one-actions, exhibit
one visual pattern, possibly repetitive. They are usually short in time, homogeneous in
motion and coherent in form. In contrast, cooking a meal or cleaning the house are very
different actions. We refer to them as complex actions, characterized by: i. They are
typically composed of several one-actions, see figure 13. ii. These one-actions, contained
in a complex action, exhibit large variations in their temporal duration and temporal
order. iii. As a consequence of the composition, a complex action takes much longer
to unfold. And, by the in-homogeneity in composition, the complex action needs to be
sampled in full, not to miss crucial parts.

In the recent literature, the main focus is the recognition of short-range actions like in
HMDB, UCF and Kinetics [91, 100, 148]. Few attention has been paid to the recognition
of long-range and complex actions, as in Charades and EventNet [144, 187], which we
study here. The first challenge is minute-long temporal modeling while maintaining
attention to seconds-long details. Statistical temporal pooling, as applied in [49,118] falls
short of learning temporal order. Neural temporal modeling [29, 50] and spatio-temporal
convolutions of various types [81,158,160] successfully learns temporal order of 8 [15] or
128 timesteps [176]. But the computational cost is far beyond scaling up to 1000 timesteps
needed for complex actions. The second challenge is tolerating variations in temporal
extent and temporal order of one-actions. Related methods [158, 182] learn spatio-
temporal convolutions with fixed-size kernels, which would be too rigid for complex
actions. To address these challenges, we present Timeception, a novel convolutional
layer dedicated only for temporal modeling. It learns long-range temporal dependencies
with attention to short-range details. Plus, it tolerates the differences in temporal extent
of one-actions comprising the complex action. As a result, we demonstrate success
in recognizing the long and complex actions, and achieving state-of-the-art-results in
Charades [144], Breakfast Actions [99] and MultiTHUMOS [189].

The novelties of of this work are: i. We introduce a convolutional temporal layer
effectively and efficiently learn minute-long action ranges of 1024 timesteps, a factor of 8
longer than best related work. ii. We introduce multi-scale temporal kernels to account for

Published in Computer Vision and Pattern Recognition (CVPR), 2019 [73]
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𝑣1

𝑣2

𝑣3

Figure 13: Given three video examples v1, v2, v3 of a complex human action “Cooking
a Meal”, one can summarize the properties of this complex action as: i. composition:
consists of several one-actions (Cook, ...), ii. order: weak temporal order of one-actions
(Get Wash), iii. extent: one-actions vary in their temporal extents.

large variations in duration of action components. iii. We use temporal-only convolutions,
which are better suited for complex actions than spatiotemporal counterparts.

3.2 R E L AT E D W O R K

Temporal Modeling. The stark difference between video and image classification is the
temporal dimension, which necessitates temporal modeling. A widely used approach
is statistical pooling: max and average pooling [57, 72], attention pooling [49], rank
pooling [37], dynamic images [13] and context gating [118], to name a few. Beyond
statistical pooling, vector aggregation is also used. [124] uses Fisher Vector [135] to
aggregate spatio-temporal features over time, while [24, 31, 50] extend VLAD [8] to
use local convolution features extracted from video frames. The downside of statistical
pooling and vector aggregation is completely neglecting temporal patterns – an important
visual cue.

Other strands of work use neural methods for temporal modeling. LSTMs are
used to model the sequence in action videos [29]. While TA-DenseNet [46] extents
DenseNet [71] to exploit the temporal dimension. To our knownedge, no substantial
improvements have been reported recently.

Short-range Action Recognition. Few works [90] learn deep appearance features
by frame-level classification of actions, using 2D CNNs. Others complement deep
appearance features with shallow motion features, as IDT [35]. Also, auxiliary image
representations are fused with RGB signals: [146] uses OpticalFlow channels, while [12]
uses Dynamic Images. 3D CNNs are the natural evolution of their 2D counterparts.
C3D [81, 158] proposes 3D CNNs to capture spatio-temporal patterns of 8 frames in
a sequence. In the same vein, I3D [15] inflates the kernels of ImageNet-pretrained
2D CNN to jump-start the training of 3D CNNs. While effective in short-range video
sequences of few seconds, 3D convolutions are too computationally expensive to address
minute-long videos, which is our focus.

Long-range Action Recognition. To learn long-range temporal patterns, [142] uses
CRF on top of CNN feature maps to model human activities. To learn video-wide
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representations, TRN [193] learns relations between several video segments. TSN [172,
173] learns temporal structure in long videos. LTC [163] considers different temporal
resolutions as a substitute to bigger temporal windows. Inspired by self-attention [164],
non-local networks [176] proposes a 3D CNN with a long temporal footprint of 128
timesteps.

All aforementioned methods succeed in modeling temporal footprint of 128 timesteps
(∼4-5 sec) at max. In this work, we address complex actions with long-range temporal
dependencies of up to 1024 timesteps, jointly.

Convolution Decomposition. CNNs succeed in learning spatial [90,171] and spatiotem-
poral [34, 60, 81, 158, 163] action concepts, but existing convolutions grow heavy in
computation, specially at the higher layers where the number of channels can grow
as much as 2k [62]. To control the computational complexity, several works propose
the decomposition of 2D and 3D convolutions. Xception [21] argues that separable
2D convolutions are as effective as typical 2D convolutions. Similarly, S3D [160, 182]
considers separable 2+1D convolutions to reduce the complexity of typical 3D convo-
lutions. ResNet [62] reduces the channel dimension using 1 × 1 2D convolution before
applying the costly 3 × 3 2D spatial convolution. ShuffleNet [191] models cross-channel
correlation by channel shuffling instead of 1 × 1 2D convolution. ResNeXt [181] pro-
poses grouped convolutions, while Inception [152,153] replaces the fixed-size 2D spatial
kernels into multi-scale 2D spatial kernels of different sizes.

In this work, we propose the decomposition of spatiotemporal convolutions into
depthwise-separable temporal convolutions, which we show to be better suited for
long-range temporal modeling that 2+1D convolutions. Moreover, to account for the
differences in temporal extents, we propose temporal convolutions with multi-scale
kernels.

3.3 M E T H O D

3.3.1 Motivation

Modern 3D CNNs learn spatiotemporal kernels over three orthogonal subspaces of video
information: the temporal (T ), the spatial (S) and the semantic channel subspace (C).
One spatiotemporal kernel w ∈ RT×L×L×C learns a latent concept by simultaneously
convolving these three subspaces [15, 158], where T is the number of timesteps, C is the
number of channels, and L is the size of spatial window. Though, there is no fundamental
reason why these subspaces must be convolved simultaneously. Instead, as showcased
in [182], one can model these subspaces separately, w ∝ ws ×wt, by decomposing w into
spatial ws ∈ R1×L×L×C and temporal wt ∈ RT×1×1×C kernels. Strictly speaking, while
replacing w with a cascade w̃ = ws × wt is often referred to as “decomposition”, this
operation is not tensor decomposition – there is no strict requirement that, at optimality,
we have w∗ ≡ w̃∗. Instead, as the cascade w̃ is, by definition, computationally more
efficient than the full kernel w, the only practical requirement is that the resulting cascade
w̃ yields equally good or better accuracies for the task at hand. In light of this realization,
while the aforementioned decomposition along the spatial and temporal axes is intuitive
and empirically successful [182], it is not the only possibility. Therefore, Any other
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decomposition is permissible, namely: w̃ = wα × wβ × wγ × ..., as long as some basic
principles are maintained for the final cascade w̃. Generalizing on recent decomposed
architectures [21, 160], we identify from the literature three intuitive design principles
for the spatiotemporal CNNs:

i. Subspace Modularity. In the context of deep network cascades, a decomposition
should be modular, such that between subspaces, it retains the nature of the respective
subspaces across subsequent layers. Namely, after a cascade of spatial and a temporal
convolutions, it must be possible that yet another cascade (of spatial and temporal
convolutions) is possible and meaningful.

ii. Subspace Balance. A decomposition should make sure that a balance is retained
between the subspaces and their parameterization in different layers. Namely, increasing
the number of parameters for modeling a specific subspace should come at the expense
of reducing the number of parameters of another subspace. A typical example is conven-
tional 2D CNN, in which the spatial subspace (S) is reduced while the semantic channel
subspace (C) is expanded.

iii. Subspace Efficiency. When designing the decomposition for a specific task, we
should make sure that the bulk of the available parameter budget is dedicated to subspaces
that are directly relevant to the task at hand. For instance, for long-range temporal
modeling, a logical choice is a decomposition that increases the convolutional parameters
for the temporal subspace (T ).

Motivated by the aforementioned design principles, we propose a new temporal con-
volution layer for encoding long-range patterns in complex actions, named Timeception,
see figure 14. First, we discuss the Timeception layer. Then we describe how to stack
Timeception layers on top of existing 2D or 3D CNNs.

3.3.2 Timeception Layer

For modeling complex actions in long videos, our temporal modeling layer faces two
objectives. First, we would like to learn the possible long-range temporal dependencies
between one-actions throughout the entire video, and for a frame sequence of up to 1000
timesteps. Second, we would like to tolerate the variations in the temporal extents of
one-actions throughout the video.

Next, we present the Timeception layer, designed with these two objectives in mind.
Timeception is a layer that sits on top of either previous Timeception layers, or a CNN.
The CNN can be either purely spatial; processing frames independently, like ResNet [62],
or short-range spatiotemporal; processing nearby bursts of frames, like I3D [15].

Long-range Temporal Dependencies. There exist two design consequences for model-
ing long-range temporal dependencies between one-actions throughout the video. The
first consequence is that our temporal network must be composed of deeper stacks of
temporal layers. Via successive layers, thereafter, complex and abstract spatiotemporal
patterns can emerge, even when they reside at temporally very distant locations in the
video. Given that we need deeper temporal stacks and we have a specific parameter
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Figure 14: The core component of our method is Timeception layer, left. Simply, it takes
as an input the features X; corresponding to T timesteps from the previous layer in
the network. Then, it splits them into N groups, and temporally convolves each group
using temporal convolution module, right. It is a novel building block comprising multi-
scale temporal-only convolutions to tolerate a variety of temporal extents in a complex
action. Timeception makes use of grouped convolutions and channel shuffling to learn
cross-channel correlations efficiently than 1 × 1 spatial convolutions.

budget for the complete model, the second consequence is that the temporal layers must
be as cost-effective as possible.

Revisiting the cost-effectiveness of spatiotemporal models, existing architectures rely
either on joint spatiotemporal kernels [15] with parameter complexity O(T · L2 · C)
or decomposed spatial and temporal kernels [160, 182] with parameter complexity
O((L2 + T ) ·C). To make the Timeception layer temporally cost-effective, according
to the third design principle of subspace importance, we opt for trading spatial and
semantic complexity for longer temporal windows. Specifically, we propose depthwise-
separable temporal convolution with kernel wTC

t ∈ RT×1×1×1. Hereafter, we refer to this
convolution as temporal-only. What is more, unlike [15, 160, 182], we propose to focus
only on temporal modeling and drop the spatial kernel ws ∈ R1×L×L×C altogether. Hence,
the Timeception layer relies completely on the preceding CNN for the detection of any
spatial pattern.

The simplified temporal-only kernel has some interesting properties. Each kernel acts
on only one channel. As the kernels do not extend to the channel subspace, they are
encouraged to learn generic and abstract, rather than semantically-specific, temporal
combinations. For instance, the kernels learn to detect the temporal pattern of one latent
concept represented by one channel. Last, as the parameter complexity of a single
Timeception layer is approximately O(T + logL), it is computationally feasible to train a
deep model to encode temporal patterns of up to 1024 timesteps. This amounts to about
40 seconds of video sequences.

Unfortunately, by stacking temporal-only convolutions one after the other, we violate
the first design principle of subspace modularity. The reason is that the semantic subspace
in long-range spatiotemporal patterns is ignored. To this end, we propose to use channel
grouping operation [181] before the temporal-only convolutions and channel shuffling
operation [191] after the temporal-only convolutions. The purpose of channel grouping
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is reducing the complexity of cross-channel correlations, by modeling it separately
for each group. Clearly, as each group contains a random subset of channels, not all
possible correlations are accounted for. This is mitigated by channel shuffling and
channel concatenation, which makes sure that the channels are grouped altogether albeit
in a different order. As such, the next Timeception layer will group a different subset
of channels. Together, channel grouping and channel shuffling is more cost-effective
operation to learn cross-channel correlations than 1× 2D convolutions [21].

Tolerating Variant Temporal Extents. The second objective for the Timeception layer
is to tolerate the differences in temporal extents of complex actions. While in the previous
description we assume a fixed length for the temporal-only kernels, one-actions in a
complex video may vary in length. To this end, we propose to replace fixed-size temporal
kernels with multi-scale temporal kernels. There are two possible ways to implement
multi-scale kernels, see figure 15. The first way, inspired by Inception [152] for images,
is to adopt K kernels, each of a different size k. The second way, inspired by [162], is to
employ dilated convolutions.

The temporal convolution module, see figure 14(b), takes as an input the features of
one group Xn ∈ RT×L×L×[C/N]. Then it applies five temporal operations in total. The
first three operations are temporal convolutions with kernel sizes k = {3, 5, 7}, each
maintaining the number of channels at C/N. The forth operation is a temporal max-
pooling with stride s = 1 and kernel size k = 2. Its purpose is to max-out activations
over local temporal window (k = 2), instead of convolving them. The fifth operation is
simply a dimension reduction for the input feature Xn, using a 1 × 1 spatial convolution.
To maintain a manageable number of dimensions for the output, the input to the first
fours operations are shrinked by a factor of M using a 1× 1 spatial convolution . After the
channel reduction, all five outputs are concatenated across channel dimension, resulting
in an output Yn ∈ RT×L×L×(5C/MN).

𝑑

𝑘

𝑣1

𝑣𝑛

𝑣2

𝑘 = 1, 𝑑 = 1𝑘 = 3, 𝑑 = 1𝑘 = 5, 𝑑 = 1𝑘 = 7, 𝑑 = 1

𝑘 = 1, 𝑑 = 1𝑘 = 3, 𝑑 = 1𝑘 = 3, 𝑑 = 2𝑘 = 3, 𝑑 = 3

Figure 15: To tolerate temporal extents, we use multi-scale temporal kernels, with two
options: i. different kernel sizes k ∈ {1, 3, 5, 7} and fixed dilation rate d = 1, ii. different
dilation rates d ∈ {1, 2, 3} and fixed kernel size k = 3.

Summary of Timeception. A Timeception layer, see figure 14(a), expects an input
feature X ∈ RT×L×L×C from the previous layer in the network. The features X across the
channel dimension are then split into N channel groups. Each group Xn ∈ RT×L××L×[C/N]

is convolved with the temporal convolution module, resulting in Yn ∈ RT×L××L×[5C/MN].
This module expands the number of channels per group by a factor of 5/M. After
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that, the features of all groups Y = {Yn | n ∈ [1, ..., N]} are concatenated across the
channel axis and then randomly shuffled. Last, to adhere to the second design principle
of subspace balance, the Timeception layer concludes with a temporal max pooling
of kernel size k = 2 and stride s = 2. The reason is that while the channel subspace
expands by a factor of 5/M after each Timeception layer, the temporal subspace shrinks
by a factor of 2.

3.3.3 The Final Model

The final model consists of four Timeception layers stacked on top of the last convolution
layer of a CNN, used as backbone. We explore two backbone choices: a spatial 2D CNN
and a short-range spatiotemporal 3D CNN.

2D CNN. The first baseline uses ResNet-152 [62] as backbone. It takes as an input 128
video frames, and processes them, up to the last spatial convolution layer res5c. Thus,
the corresponding output for the input frames is the feature X ∈ R128×7×7×2048. Then, we
proceed with four successive layers of Timeception, with BatchNorm and ReLU. Each
has channel expansion factor of 5/M = 5/4 = 1.25, M = 4 and temporal reduction
factor of 2. Thus, the resulting feature is Y ∈ R8×7×7×5000. To further reduce the spatial
dimension, we follow the convention of CNNs by using spatial average pooling, which
results in the feature Y′ ∈ R8×5000. And to finally reduce the temporal dimension, we
use depthwise-separable temporal convolution with kernel size k ∈ R8×1×1×1 with no
zero-padding. The resulted feature Z ∈ R5000 is classified with a two-layer MLP, with
BatchNorm and ReLU.

3D CNN. The second baseline uses I3D [15] as backbone. It takes as an input 128 video
segments (each has 8 successive frames), and independently processes these segments,
up to the last spatiotemporal convolution layer mixed-5c. Thus, the corresponding
output for the input segments is the feature X ∈ R128×7×7×1024. The rest of this baseline
is no different than the previous one. The benefit of using I3D is that the Timeception
layers learn long-range temporal combinations of short-range spatiotemporal patterns.

Implementation. When training the model on a specific dataset, first we pretrain the
backbone CNN on this dataset. We use uniformly sampled frames for the 2D backbone
and uniformly sampled video segments (each has 8 successive frames) for the 3D
backbone. After pre-training, we plug-in Timeception and MLP layers on top of the
last convolution layer of the backbone and fine-tune the model on the same dataset. At
this stage, only Timeception layers are trained, while the backbone CNN is frozen. The
model is trained with batch-size 32 for 100 epoch. It is optimized with SGD with 0.1,
0.9 and 1e-5 as learning rate, momentum and weight decay, respectively. Our public
implementation [4] uses TensorFlow [5] and Keras [22].
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3.4 E X P E R I M E N T S

3.4.1 Datasets

The scope of this work is complex actions with their three properties: composition,
temporal extent and temporal order –see figure 13. Thus, we choose to conduct our
experiments on Charades [144], Breakfast Actions [99] and MultiTHUMOS [189]. Other
infamous datasets for action recognition do not meet the properties of complex actions.

Charades is multi-label, action classification, video dataset with 157 classes. It contains
8k, 1.2k and 2k videos for training, validation and test splits, respectively (67 hrs for
training split). On average, each complex action (i.e. each video) is 30 seconds and
contains 6 one-actions. Thus, Charades meets the criteria of complex actions. We use
mean Average Precision (mAP) for evaluation. As labels of test set are held out, we
report results on the validation set, similar to all related works [50, 142, 142, 176, 177].

Breakfast Actions is a dataset for unscripted cooking-oriented human activities. It
contains 1712 videos in total, 1357 for training and 335 for test. The average length
of videos is 2.3 minutes. It is a video classification task of 12 categories of breakfast
activities, where each video represents only one activity. Besides, each video has
temporal annotation of one-actions composing its activity. In total, there are 48 classes
of one-actions. In our experiments, we only use the activity annotation, and we do not
use the temporal annotation of the one-actions.

MultiTHUMOS is a dataset for human activities in untrimmed videos, with the primary
focus on temporal localization. It contains 65 action classes and 400 videos (30 hrs).
Each video can be thought of a complex action, which comprises 11 one-actions on
average. MultiTHUMOS extends the original THUMOS-14 [77] by providing multi-
label annotation for the videos in validation and test splits. Having multiple and dense
labels for the video frames enable temporal models to benefit from the temporal relations
between one-actions across the video. Similar to Charades, mAP is used for evaluation.

3.4.2 Tolerating Temporal Extents

In this experiment, we evaluate the capacity of the multi-scale kernels to tolerate the
differences in temporal extents of actions. The experiment is carried out on Charades.

Original v.s. Altered Temporal Extents First, we train two baselines, one with multi-
scale temporal kernels (as in Timeception) and the other with fixed-size kernels. The
training is done on the original temporal extent of training videos. Then, at test time
only, we alter the temporal extents of test videos. Specifically, we split each test video
into segments. Then, we temporally expand or shrink these segments. Expansion is
done by repeating frames, while shrinking is done by dropping frames. We use 4
types of alterations with varying granularity to test the model in different scenarios: (a)
very-coarse, (b) coarse, (c) fine, and (d) very-fine, see in figure 16.

The results of this controlled experiment are shown in table 4. We observe that
Timeception is more effective than fixed-size kernels in handling unexpected variations
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4

3232

Figure 16: We split a video of 128 timesteps into segments of equal length (left, before
alteration), and alter their temporal extents by expansion and shrinking (right, after
alteration). We use 4 types of alterations:(a) very-coarse, (b) coarse, (c) fine, and (d)
very-fine. Numbers in boxes are timesteps.

Altered Extent Percentage Drop ↓ in mAP

I3D ResNet
Fixed ↓ Multi ↓ Fixed ↓ Multi ↓

(a) very-coarse 2.09 1.75 1.52 1.08
(b) coarse 2.92 2.44 3.26 2.15
(c) fine 1.74 1.12 1.59 1.13
(d) very-fine 2.18 1.71 1.38 1.20

Table 4: Timeception, with multi-scale kernel, tolerates the altered temporal extents
better than fixed-size kernels. We report the percentage drop in mAP (lower is better)
when testing on original v.s. altered videos of Charades. I3D and ResNet are backbone
CNNs.

in temporal extents. The same observations is confirmed using either I3D or ResNet as
backbone architecture.

Fixed-size vs. Multi-scale Temporal Kernels This experiment points out the merit of
using multi-scale temporal kernels. For this, we compare fixed-size temporal convolutions
against multi-scale temporal-only convolutions, either with different kernel sizes k or
dilation rates d. And we train 3 baseline models with different configurations of k, d: i.
Fixed kernel size and fixed dilation rate d = 1, k = 3. This is the typical configuration
used in 3D CNNs [15, 158, 176, 182]. ii. Different kernel sizes k ∈ {1, 3, 5, 7} and fixed
dilation rate d = 1. iii. Fixed kernel size k = 3 and different dilation rates d ∈ {1, 2, 3}.

The result of this experiment are shown in table 5. We observe that using multi-scale
kernels is better suited for modeling complex actions than fixed-size kernels. The same
observation holds for both I3D and ResNet as backbones. Also, we observe little to no
change in performance when using different dilation rates d instead of different kernel
sizes k.

3.4.3 Long-range Temporal Dependencies

In this experiment, we demonstrate the capacity of multiple Timeception layers to
learn long-range temporal dependencies for complex actions. We train several baseline
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Kernel Type Kernel Size (k) Dilation Rate (d)
mAP (%)

ResNet I3D

Multi-scale
1,3,5,7 1 30.82 33.76

3 1,2,3 30.37 33.89

Fixed-size 3 1 29.30 31.87

Table 5: Timeception, using multi-scale kernels (i.e. different kernel sizes (k) or dilation
rates (d), outperforms fixed-size kernels on Charades. I3D/ResNet are backbone.

Figure 17: The learned weights by temporal convolutions of three Timeception layers.
Each uses multi-scale convolutions with varying kernel sizes k ∈ {3, 5, 7}. In bottom layer
(1), we notice that long kernels (k = 7) captures fine-grained temporal dependencies. But
at the top layer (3), the long kernels tend to focus on coarse-grained temporal correlation.
The same behavior prevails for the shot (k = 3) and medium (k = 5) kernels.

models equipped with Timeception layers. These baselines use different number of input
timesteps. We experiment on Charades, with both ResNet and I3D as backbone.

ResNet is used, with a different number of timesteps as inputs: T ∈ {32, 64, 128},
followed by Timeception layers. ResNet processes one frame at a time. Hence, in one
feedforward pass, the number of timesteps consumed by Timeception layers is equal to
that consumed by ResNet.

I3D is considered, with a different number of timesteps as inputs: T ∈ {256, 512, 1024},
followed by Timeception layers. I3D processes 8 frames into one super-frame at a time.
Thus, Timeception layers model T ′ ∈ {32, 64, 128} super-frames, Practically however, as
each super-frame is related to a segment of 8 frames, both I3D+Timeception process in
total T ∈ {256, 512, 1024} frames.

We report results in table 6 and we make two observations. First, stacking Timeception
layers leads to an improved accuracy when using both ResNet and I3D as backbone.
As the only change between these models is the number of Timeception layers, we
deduce that the Timeception layers have succeeded in learning temporal abstractions.
Second, despite stacking more and more Timeception layers, the number of parameters is
controlled. Interestingly, using 4 Timeception layers on I3D processing 1024 timesteps
requires half the parameters needed for a ResNet processing 128 timesteps. The reason
is the number of channels from ResNet is twice as much as from I3D (2048 v.s. 1024).
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Baseline CNN Steps TC Steps Params mAP (%)

+ 3 TC 32 32 3.82 30.37
ResNet + 3 TC 64 64 3.82 31.25

+ 4 TC 128 128 5.58 31.82

+ 3 TC 256 32 1.95 33.89
I3D + 3 TC 512 64 1.95 35.46

+ 4 TC 1024 128 2.83 37.19

Table 6: Timeception layers allow for deep and efficient temporal models, able to learn
the temporal abstractions needed to learn complex actions. Columns are: Baseline:
backbone CNN + how many Timception layers (TC) on top of it, CNN Steps: input
timesteps to the CNN, TC Steps: input timesteps to the first Timeception layer, Params:
number of parameters used by Timeception layers, in millions.

We conclude that Timeception layers allow for deep and efficient models, able to learn
long-range temporal abstractions, which is crucial for complex actions.

Learned Weights of Timeception. Figure 17 visualizes the learned weights by our
model. Specifically, three Timeception layers trained on top of I3D backbone. The
figure depicts the weights of multi-scale temporal convolutions with different kernel
sizes k ∈ {3, 5, 7}. For simplicity, only the first 30 kernels from each kernel-size, are
shown. We make two remarks for these learned weights. First, at layer 1, we notice
that long kernels (k = 7) captures fine-grained temporal dependencies, because of the
rapid transition of kernel weights. But at layer 3, these long kernels tend to focus on
coarse-grained temporal correlations, because of the smooth transition between kernel
weights. The same behavior prevails for the short (k = 3) and medium (k = 5) kernels.
Second, at layer 3, we observe that long-range and short-range temporal patterns are
learned by short kernels (k = 3) and long kernels (k = 7), respectively. The conclusion
is that for complex actions, both video-wide and local temporal reasoning, even at the
top layer, is crucial for recognition.

3.4.4 Effectiveness of Timeception

To demonstrate the effectiveness of Timeception, we compare it against related temporal
convolution layers: i. separable temporal convolution [160], that models both T ,C
simultaneously. ii. grouped separable temporal convolution to model T , followed by
1 × 1 2D convolution to model C. iii. grouped separable temporal convolution to model
T , followed by channel shuffling to model C. Interestingly in figure 18 top, Timeception
is very efficient in maintaining a reasonable increase in number of parameters as the
network goes deeper. Also, figure 18 bottom shows how Timeception improves mAP on
Charades, scales up temporal capacity of backbone CNNs while maintaining the overall
model size.
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Figure 18: Top: the cost of adding new Timeception layers is marginal, compared to
related temporal layers. Bottom: Timeception improves performance, scales up temporal
capacity of backbone CNNs while maintaining the model size.

3.4.5 Experiments on Benchmarks

Charades is used to evaluate our model, and to compare against related works. In this
experiment, our baseline networks use 4 Timeception layers. The number of convolu-
tional groups is 8 for I3D and 16 for ResNet, be it 2D or 3D. The results in table 7 shows
that Timeception monotonically improves the performance of the backbone CNN. The
absolute gain on top of ResNet and I3D is 8.8% and 4.3%, respectively.

Beyond the overall mAP, how beneficial is Timeception? And in what cases exactly
does it help? To answer this question, we make two comparisons to assess the relative
performance of Timeception. We experiment two scenarios: i. short-range (32 timesteps)
v.s. long-range (128 timesteps), ii. fixed-scale v.s. multi-scale kernels. The results are
shown in figures 19, 20, and we make two observations.

First, when comparing the relative performance of multi-scale vs. fixed-size Timecep-
tion, see figure 19, we observe that multi-scale Timeception excels in complex actions
with dynamic temporal patterns. As an example, “take clothes + tidy clothes + put
clothes”, one actor may take longer than others to tidy clothes. In contrast, fixed-size
Timeception excels in the cases where the complex action is more rigorous in the tempo-
ral pattern, e.g. “open window + close window”. Second, when comparing the relative
performance of short-range (32 timesteps) v.s. long-range (1024 timesteps) Timeception,
see figure 20, the latter excels in complex actions than requires the entire video to unfold,
e.g. “fix door + close door”. However, short-range Timeception would do better in
one-actions, like “open box + close box” or “turn on light + turn of light”.

Breakfast Actions is used as a second dataset to experiment our model. The average
length of a video in this datataset is 2.3 sec. For this experiment, we use 3 layers of
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Ours Method Modality mAP (%)

Two-stream [142] RGB + Flow 18.6
Two-stream + LSTM [142] RGB + Flow 17.8
ActionVLAD [50] RGB + iDT 21.0
Temporal Fields [142] RGB + Flow 22.4
Temporal Relations [193] RGB 25.2

ResNet-152 [3] RGB 22.8
3 ResNet-152 + TC RGB 31.6

I3D [15] RGB 32.9
3 I3D + TC RGB 37.2

3D ResNet-101 [176] RGB 35.5
3D ResNet-101 + NL [176] RGB 37.5
3D ResNet-50 + GCN [177] RGB + RP 37.5
3D ResNet-101 + GCN [177] RGB + RP 39.7

3 3D ResNet-101 + TC RGB 41.1

Table 7: Timeception (TC) outperforms related works using the same backbone CNN. It
achieves the absolute gain of 8.8% and 4.3% over ResNet and I3D, respectively. More
over, using the full capacity of Timeception improves 1.4% over best related work.

Timeception. And as for the backbone, we use I3D and 3D ResNet-50. None of the
backbones is fine-tuned on this dataset, only Timeception layers are trained. To make
one video consumable by our baseline, from each video we uniformly sample 64 video
snippet, each of 8 sucessive frames. That makes the total timesteps modeled by the
baseline is 512. Finally, we report result in table 8.

Method Activities (Acc. %) Actions (mAP %)

I3D 64.31 47.71
I3D + TC 69.30 56.36

3D ResNet-50 66.73 53.27
3D ResNet-50 + TC 71.25 59.64

Table 8: Timeception outperform baselines in recognizing the long-range activities of
Breakfast dataset.

MultiTHUMOS is used as a third dataset to experiment our model. This helps in
investigating the generality on different datasets. Related works use this dataset for
temporal localization of one-actions in each video of complex action. Differently, we
use this dataset to serve our objective: multi-label classification of complex actions,
i.e. the entire video. As such, the evaluation method used is mAP [130]. To assess
the performance of our model, we compare against I3D as a baseline. As shown in the
results in table 9, Timeception, equipped with multi-scale kernels outperforms that with
fixed-size kernel.
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0.1 0.0 0.1
mAP Difference

sit on table, hold paper, work on paper
wash cup, glass, bottle, dish

open fridge, get something, close fridge
taking shoes, Walking through doorway

take clothes, tidy clothes, put clothes
take blanket, tidy blanket, put blanket

pour cup/glass/bottle
hold pillow, throw pillow

sit on chair, take cup/glass/bottle
opening a window, close window

Figure 19: Multi-scale Timeception outperforms the fixed-kernel when complex actions
are dynamic, in green. But when complex actions with rigid temporal patters, fixed-size
performs better than multi-scale, in orange.

Method Kernel Size (k) Dilation Rate (d) mAP (%)

I3D – – 72.43
I3D + Timeception 3 1 72.83
I3D + Timeception 3 1,2,3 74.52
I3D + Timeception 1,3,5,7 1 74.79

Table 9: Timeception, with multi-scale temporal kernels, helps baseline models to capture
the long-range dependencies between one-actions in videos of MultiTHUMOS.

3.5 C O N C L U S I O N

Complex actions such as “cooking a meal” or “cleaning the house” can only be recog-
nized when processed fully. This is in contrast to one-actions, that can be recognized
from a small burst of frames. This work presents Timeception, a novel temporal con-
volution layer for complex action recognition. Thanks to using efficient temporal-only
convolutions, Timeception can scale up to minute-long temporal modeling. In addition,
thanks to multi-scale temporal convolutions, Timeception can tolerate the changes in tem-
poral extents of complex actions. Interestingly, when visualizing the temporal weights
we observe that earlier timeception layers learn fast temporal changes, whereas later
timeception layers focus on more global temporal transitions. Evaluating on popular
benchmarks, the proposed Timeception improves the state-of-the-art notably.
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0.1 0.0 0.1
mAP Difference

fix door, close door
wash table, put on table

someone run, someone stand/sit
open cabinet, take food, close cabinet
open laptop, put laptop, watch laptop

tidy broom, tidy floor
hold box, take box

Opeen box, close box
open laptop, watch laptop
turn on light, turn off light

Figure 20: Long-range Timeception outperforms the short-range version when complex
actions need the entire video to unfold, in green. However, we see one-actions that
short-range Timeception can easily capture, in orange.
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4

V I D E O G R A P H : R E C O G N I Z I N G M I N U T E S - L O N G H U M A N
AC T I V I T I E S I N V I D E O S

4.1 I N T RO D U C T I O N

Human activities in videos can take many minutes to unfold, each is packed with plentiful
of fine-grained visual details. Take for example two activities: “making pancake” or
“preparing scrambled eggs”. The question is what makes a difference between these two
activities? Is it the fine-grained details in each, or the overall painted picture by each? Or
both?

The goal of this work is to recognize minutes-long human activities as defined by [99],
also referred to as complex actions in [73]. A long-range activity consists of a set of
unit-actions [99], also known as one-actions [73]. For example, the activity of “making
pancakes” includes unit-actions: “cracking egg”, “pour milk” and “fry pancake”. Some
of these unit-actions are crucial to distinguish the activity. For example, the unit-action
“cracking egg” is all what is needed to discriminate the activity of “making pancakes”
from “preparing coffee”. Also, long-range activity is recognized only in its entirety, as
its unit-actions are insufficient by themselves. For example, only a short video snippet of
unit-action “cracking egg” cannot tell apart “making pancake” from “preparing scrambled
eggs”, as both activities share the same unit-action “cracking egg”. Added to this, the
temporal order of unit-actions for a specific activity may be permuted. There exist
different orders of how we can carry out an activity, like “prepare coffee”, see figure 21.
Nonetheless, there exist some sort of temporal structure for such activity. One can start
“preparing coffee” by “taking cup” and usually end up with “pour sugar” and “stir coffee”.
So, to recognize long-range human activities, goals to be met are: modeling the temporal
structure of the activity in its entirety, and occasionally paying attention to its fine-grained
details.

There exist two distinct approaches for long-range temporal modelling. The first
approach is orderless modeling. Statistical pooling [72] and vector encoding [31, 50]
are used to aggregate video information over time. The upside is the ability to address
seemingly minutes- or even hours-long videos. The downside, however, is the inability
to learn temporal patterns and the arrow-of-time [46]. Both are proven to be crucial for
some tasks [70, 143]. The second approach is order-ware modelling. 3D CNN is proven
to be successful in learning spatiotemporal concepts for short video snippets with strict
temporal pattern [15]. Careful design choices enable them to model up to minute-long
temporal dependencies [73]. But for minutes-long human activities, the strict temporal

Published in International Conference on Computer Vision Workshop(ICCV Workshop) on Scene Graph
Representation and Learning (SGRL), 2019 [74]
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take cup 

pour coffee pour milk 

spoon sugar stir coffee 

pour sugar 

Figure 21: The activity of “preparing coffee” can be represented as undirected graph of
unit-actions. We are inspired by graphs to represent this activity. The reason is that a
graph can portray the many ways one can carry out such activity. More over, it preserves
the temporal structure of the unit-actions. Reproduced from [99].

pattern no longer exists. So, the question arises: how to model the temporal structure of
minutes or even hour-long human activities?

This work proposes VideoGraph, a graph-inspired representation to achieve the afore-
mentioned goal. A soft version of undirected graph in learned completely from the
dataset. The graph nodes represent the key latent concepts of which the human activity
is composed. These latent concepts are analogous to one-actions. While the graph edges
represent the temporal relationship between these latent concepts, i.e. the graph nodes.
VideoGraph has the following novelties. i. In its graph-inspired representation, Video-
Graph models human activity for up to thirty-minute videos, whereas the state-of-the-art
is one minute [73]. ii. A proposed node embedding block to learn the graph nodes from
data. This circumvents the node annotation burden for long-range videos, and makes
VideoGraph extensible to video datasets without node-level annotation. iii. A novel
graph embedding layer to learn the relationships between graph nodes. The outcome is
representations of the temporal structure of long-range human activities. VideoGraph
improvements on benchmarks for human activities: Breakfast [99], Epic-Kitchens [26]
and Charades [144].

4.2 R E L AT E D W O R K

Orderless v.s. Order-aware Temporal Modeling. Be it short-, mid-, or long-range
human activities, when it comes to temporal modeling, related methods are divided into
two main families: orderless and order-aware. In orderless methods, the main focus is the
statistical pooling of temporal signals in videos, without considering their temporal order
or structure. Different pooling strategies are used, as max and average pooling [72],
attention pooling [49], and context gating [118], to name a few. A similar approach is
vector aggregation, for example: Fisher Vectors [124] and VLAD [31, 50]. Although
statistical pooling can trivially scale up to extremely long sequences in theory, this comes
at a cost of losing the temporal structure, reminiscent of Bag-of-Words losing spatial
understanding.

In order-aware methods, the main attention is payed to learning structured or or-
dered temporal patterns in videos. For example, LSTMs [29, 107], CRF [142], 3D
CNNs [15, 160, 176, 182, 184]. Others propose temporal modeling layers on top of
backbone CNNs, as in Temporal-Segments [172], Temporal-Relations [193] and Rank-
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Pool [37]. The outcome of order-aware methods is substantial improvements over their
orderless counterparts in standard benchmarks [91, 100, 148]. Nevertheless, both tem-
poral footprint and computational cost remain the main bottlenecks to learn long-range
temporal dependencies. The best methods [73, 176] can model as much as 1k frames
(∼30 seconds), which is a no match to minutes-long videos. This work strives for the
best of two worlds: learning the temporal structure of human activities in minutes-long
videos.

Short-range Actions v.s. Long-range Activities. Huge body of work is dedicated
to recognizing human actions that take few seconds to unfold. Examples of well-
established benchmarks are: Kinetics [91], Sports-1M [90], YouTube-8M [6], Moments
in Time [121], 20B-Something [51] and AVA [52]. For these short- or mid-range actions,
[143] demonstrates that a few frames suffice for a successful recognition. Other strands of
work shift their attention to human activities that take minutes or even an hour to unfold.
Cooking-related activities are good examples, as in YouCook [196], Breakfast [99],
Epic-Kitchens [26], MPII Cooking [134] or 50-Salads [149]. Other examples include
instructional videos: Charades [144], and unscripted activities: EventNet [187], Multi-
THUMOS [189].

In all cases, several works [42, 73, 99, 134] define the differences between short- and
long-range human actions, albeit with a different naming or terms. We follow the same
definition of [99]. More formally, we use unit-actions to refer to fine-grained, short-range
human actions, and activities to refer to long-range complex human activities.

Graph-based Representation. Earlier, graph-based representation has been used in
storytelling [92, 183], and video retrieval [128]. Different works use graph convolutions
to learn concepts and/or relationships from data [28, 93, 123]. Recently, graph convolu-
tions are applied to image understanding [19], video understanding [47, 68, 69, 177] and
question answering [174]. Despite their success in learning structured representations
from video datasets, the main limitation of graph convolution methods is requiring the
graph nodes and/or edges to be known a priori. Consequently, when node or frame-level
annotations are not available, using these methods is hard. In contrast, this work aims for
a graph-inspired representation in which the graph nodes are fully inferred from data.
The result is that our work is extensible to datasets without node-level annotations.

Self-Attention is used extensively in language understanding [109]. The recently pro-
posed the transformer block shows substantial improvements in machine translation [164],
image recognition [176] and video understanding [47, 178] or even graph representa-
tions [166]. The transformer block [178] attends to a local feature conditioned on
both local and global context. That is why it outperforms the self-attention mecha-
nism [30, 108, 186], which is conditioned on only the local feature.

A video of human activity consists of short snippets of unit-actions. This work is
inspired by all these attention mechanisms to attend to a unit-action (i.e. local feature)
based on the surrounding activity (i.e. global context).
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Figure 22: Overview of VideoGraph. It takes as input a video segment si of 8 frames
from an activity video v. Then, it represents it using standard 3D CNN, .e.g I3D. The
corresponding feature representation is xi. Then, a node attention block attends to
a set of N latent concepts based on their similarities with xi, which results in the
node-attenative representation Zi. A novel graph embedding layer then processes Zi to
learn the relationships between its latent concepts, and arrives at the final video-level
representation. Finally, an MLP is used for classification.

4.3 M E T H O D

Motivation. We observe that a minutes-long and complex human activity usually is
sub-divided into unit-actions. Similar understanding is concluded by [73,99], see Fig. 21.
So, one can learn the temporal dependencies between these unit-actions using methods
for sequence modeling in videos, as LSTM [107] or 3D CNN [182]. However, these
methods face the following limitations. First, such activities may take several minutes or
even hours to unfold. Second, as video instances of the same activity are usually wildly
different, there is no single temporal sequence that these methods can learn. For example,
one can “prepare coffee” in many different ways, as the various paths in Fig. 21 indicate.
Nevertheless, there seems to be an over-arching weak temporal structure of unit-actions
when making a coffee.

We are inspired by graphs to represent the temporal structure of the human activities
in videos. The upside is the ability of a graph-based representation to span minutes-
or even hour-long temporal sequence of unit-actions while preserving their temporal
relationships. The proposed method, VideoGraph, is depicted in Fig. 22, and in the
following, we discuss its details.

VideoGraph. We start from a video v comprising T randomly sampled video segments
v = {si | i = 1, 2, ..., T }. Each segment si is a burst of 8 successive video frames, and
represented as feature xi ∈ R1×H×W×C using standard 3D CNN, for example I3D [15],
where C is the number of channels, H, W are height and width of the channels. Our
goal is to construct an undirected graph G = (N ,E) to represent the structure of human
activity in video v. The graph nodes N would then capture the key unit-actions in the
activity. And the graph edges E would capture the temporal relationship between these
nodes (i.e. unit-actions).

Learning The Graph Nodes. In a dataset of human activities, unit-actions can be
thought of as the dominant latent short-range concepts. That is, unit-actions are the
building blocks of the human activity. So, in a graph-inspired representation of the
activity, these unit-actions can act as the graph nodesN . Assuming that it is prohibitively
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expensive to have unit-actions annotation for minutes-long videos, a challenge is how
to represent them? In other words, how to represent the graph nodes? As a remedy, we
opt for learning a set of N latent features Y , Y = {y j | j = 1, 2, ..., N}, Y ∈ RN×C . These
features Y then become the vector representation of the graph nodes N , i.e. Y ≡ N .
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Figure 23: (a) Node attention block measures similarities α between segment feature
xi and learned nodes Ŷ . Then, it attends to each node in Ŷ using α. The result is the
node-attentive feature Zi expressing how similar each node to xi. (b) Graph Embedding
layer models a set of T successive node-attentive features Z using 3 types of convolutions.
i. Timewise Conv1D learns the temporal transition between node-attentive features
{Zi, ..., Zi+t}. ii. Nodewise Conv1D learns the relationships between nodes {zi, j, ..., zi, j+n}.
iii. Channelwise Conv3D updates the representation for each node zi j.

A problem, however, is how to correlate each video feature xi with each node in Y .
To solve this, we propose the node attention block, inspired by self-attention block [47,
164, 176], shown in Fig. 23a. The node attention block takes as an input a feature xi
and all the node features Y . Then, it transforms the initial representation of the nodes
from Y into Ŷ , using one hidden layer MLP with weight and bias w ∈ RC×C , b ∈ R1×C .
This transformation makes the nodes learnable and better suited for the dataset inhand.
Then, a dot product ⊗ is used to measure the similarity between xi and Ŷ . An activation
function σ is applied on the similarities to introduce non-linearity. The result is the
activation values α ∈ RH×W×N . The last step is multiplying all the nodes Ŷ with the
activation values α, such that we attend to each node ŷ j by how much it is related to
the feature xi. Thus, the node attention block outputs the attended nodes Zi = {zi j | j =
1, 2, ..., N}, Zi ∈ RN×H×W×C . We refer to Zi as node-attentive feature, and we refer to zi j
as the j-th node feature in Zi. More formally,

Ŷ = w ∗ Y + b (4.1)

α = σ(xi ∗ ŶT ) (4.2)

Zi = α � Ŷ

= α j � y j, j = 1, 2, ..., N (4.3)
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Hence, the vector representation of all video segments is a 5D tensor Z = {Z1, Z2, ..., ZT },
Z ∈ RT×N×H×W×C . The names of 5 dimensions in Z are: timesteps, nodes, width, height
and channels. From now on, we use these 5 dimensions to express feature vectors and
convolutional kernels.

In sum, the node attention block takes a feature xi, corresponding to a short video
segment si and measures how similar α it is to learned set of latent concepts Ŷ . The
similarities α are then used to attend to the latent concepts. This is crucial for recognizing
long-range videos, where the network is not feed-forwarded only with a short video
segment xi but with global representation Y . This gives the network the ability for focus
on both local video signal xi and global learned context Ŷ .

Our node attention block is different from the non-local counterpart [176] in twofold.
First, the attention values are conditioned on local xi and global Ŷ signals. Second,
non-local does tensor product between attention values α and local signal xi, while
we attend by scalar multiplication between α, Ŷ to retrain the node dimension. Lastly,
our node attention block is much more simpler than the non-local, as we use only one
fully-connected layer.
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𝑘𝑁

Figure 24: (a) Timewise Conv1D learns the temporal transition between successive
nodes-embeddings {Zi, ..., Zi+t} using kernel kT of kernel size t. (b) Nodewise Conv1D
learns the relationships between consecutive nodes {zi, j, ..., zi, j+n} using kernel kN of
kernel size n.

Learning The Graph Edges. Up till now, we have learned the graph nodes Ŷ . We
have also represented each video segment si in terms of the nodes, as node-attentive
feature Zi. Next, we would like to learn the graph edges E, and arrive at the final graph
structure. To this end, we propose a novel graph embedding layer, shown in Fig. 23b.
Regarding the graph edges, we are interested in two types of relationships. First, we are
interested in the relationship between graph nodes. Loosely speaking, if nodes stand
for unit-actions as “pour milk”, “crack egg”, we would like to learn how correlated are
these two unit-actions when used in different activities as “make pancake” or “prepare
coffee”. Second, we are interested in how the graph nodes transition over time. For
instance, we want to encode the significance of unit action “pour milk” comes after or
before “crack egg” when it comes to recognizing “make pancake”. Let’s take t successive
video segments {si, ..., si+t}. When processed by CNN and node attention block, they
are represented as {Zi, ..., Zi+t}. To learn the temporal transition between them, we
apply a one-dimensional convolution, (Conv1D) on the temporal dimension only. These
timewise Conv1D, proposed by [73], are efficient in learning temporal concepts. One
kernel learned by timewise Conv1D is the 5D tensor kT ∈ Rt×1×1×1×1, where t is the
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kernel size. In total, we learn C kernels to keep the channel dimension of the features Z
unchanged.

Besides learning the temporal transition between node-attentive features {Zi, ..., Zi+t},
we also want to learn the relationship between the nodes themselves {zi j | j = 1, 2, ..., N}
inside each node-attentive feature Zi. The problem is that the adjacency matrix, which
defines the graph structure, is unkown. A naive approach is to assume all nodes are
connected. This leads to an explosion of N2 edges – prohibitive to learn. To overcome
this, we restrict the number of adjacents (i.e. neigbours) each node zi j can have. In other
words, we assume that each node zi j is adjacent to only n other nodes. This makes it
possible to learn edge weights using one-dimensional convolution, applied on only the
node dimension of Zi. We call this convolution nodewise Conv1D. One kernel learned
by nodewise Conv1D is the 5D tensor kN ∈ R1×n×1×1×1, where n is the kernel size. In
sum, we learn C kernels to keep the channel dimension of the features Z unchanged.

Both timewise and nodewise Conv1D learn graph edges separately for each channel in
the features Z. That is why we follow up with a typical spatial convolution (Conv2D) to
model the cross-channel correlations in each node feature zi j. Spatial Conv2D learns C
different kernels, each is the 5D tensor kC ∈ R1×1×1×1×C .

Having learned the graph edges using convolutional operations, we proceed with
BatchNormalization and ReLU non-linearity. Finally, we downsample the entire graph
representation Z over both time and node dimensions using MaxPooling operation. It uses
kernel size 3 and stride 3 for both the time and node dimensions. Thus, after one layer of
graph embedding, the result graph representation is reduced from T × N × H ×W ×C to
(T /3) × (N/3) × H ×W ×C.

4.4 E X P E R I M E N T S

Implementation. When training VideoGraph on a video dataset, we uniformly sample
T = 64 video segments from each video v. One segment si is a burst of 8 successive
frames. When the 64 segments are fed-forward to I3D up to the last convolutional layer
res5 c, the corresponding convolutional features for the entire video is X = {xi | i =
1, 2, ..., 64}, X ∈ R64×7×7×1024. We use N = 128 as the number of latent concepts.
Both the video-level features X and latent concepts Y ∈ R128×1024 are fed-forward to
the node attention block. The result is the graph representation Z ∈ R128×64×7××1024.
Then, Z is passed to graph embedding layers to learn node edges and reduce the feature
representation. In graph embedding layer, we use kernel size t = 7 for the timewise
Conv1D and kernel size n = 7 for the nodewise Conv1D. In total, we use 2 successive
layers of graph embedding. Their output feature is then feed-forwarded to a classifier
to arrive at the vide-level predictions. The classifier uses 2 fully-connected layers with
BatchNormalization and ReLU non-linearity. We use softmax as the final activation for
single-label classification or sigmoid for multi-label classification.

VideoGraph is trained with batch-size 32 for 500 epoch. It is optimized with SGD
with 0.1, 0.9 and 0.00001 as learning rate, momentum and weight decay, respectively. It
is implemented using TensorFlow [5] and Keras [22].
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4.4.1 Datasets

As this work focus on human activities spanning many minutes, we choose to conduct
our experiments on the following benchmarks: Breakfast [99], Epic-Kitchens [26] and
Charades [144]. Other benchmarks for human activities contain short-range videos, i.e. a
minute or less, thus do not fall within the scope of this work.

Breakfast is a dataset for task-oriented human activities, with the focus on cooking. It
is a video classification task of 12 categories of breakfast activities. It contains 1712
videos in total, 1357 for training and 335 for test. The average length of videos is 2.3
minutes. The activities are performed by 52 actors, 44 for training and 8 for test. Having
different actors for training and test splits is a realistic setup for testing generalization.
Each video is represents only one category of focus activity. Besides, each video has
temporal annotation of unit-actions comprising the activity. In total, there are 48 classes
of unit-actions. In our experiments, we only use the activity annotation, and we don’t
use the temporal annotation of unit-actions.

Epic-Kitchens is a recently introduced large-scale dataset for cooking activities. In
total, it contains 274 videots performed by 28 actors in different kitchen setups. Each
video represents a cooking different cooking activity. The average length of videos is
30 minutes, which makes it ideal for experimenting very long-range temporal modeling.
Originally, the task proposed by the dataset is classification on short video snippets,
with average length of ∼3.7 seconds. The provided labels are, therefore, the categories
of objects, verbs and unit-actions in each video snippet. However, the dataset does no
provide video-level category. That is why we consider all the object labels of a specific
video as video-level label. Hence, posing the problem as multi-label classification of these
videos. This setup is exactly the same used in Charades [144] for video classification.
For performance evaluation, we use mean Average Precision (mAP), implemented in
Sk-Learn [130].

Method Modality mAP (%)

Two-stream [142] RGB + Flow 18.6
Two-stream + LSTM [142] RGB + Flow 17.8
ActionVLAD [50] RGB + iDT 21.0
Temporal Fields [142] RGB + Flow 22.4
Temporal Relations [193] RGB 25.2

ResNet-152 [3] RGB 22.8
ResNet-152 + Timeception [73] RGB 31.6

I3D [15] RGB 32.9
I3D + ActionVLAD [50] RGB 35.4
I3D + Timeception [73] RGB 37.2
I3D + VideoGraph RGB 37.8

Table 10: VideoGraph outperforms related works using the same backbone CNN. Results
are for Charades dataset.
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Method
Breakfast Breakfast Epic-Kitchens
Acc. (%) mAP (%) mAP (%)

ResNet-152 [3] 41.13 32.65 –
ResNet-152 + ActionVLAD [50] 55.49 47.12 –
ResNet-152 + Timeception [73] 57.75 48.47 –
ResNet-152 + VideoGraph 59.12 49.38 –

I3D [15] 58.61 47.05 48.86
I3D + ActionVLAD [50] 65.48 60.20 51.45
I3D + Timeception [73] 67.07 61.82 55.46
I3D + VideoGraph 69.45 63.14 55.32

Table 11: VideoGraph outperforms related works using the same backbone CNN. We
experiment 2 different backbones: I3D and ResNet-152. We experiment on two different
tasks of Breakfast: single-label classification of activities and multi-label classification
of unit-actions. And for Epic-Kitchens, we experiment on the multi-label classification.

Charades is a dataset for multi-label classification of action videos. It consists of 8k,
1.2k and 2k video for training, validation and testing, respectively. is multi-label, action
classification, video dataset with 157 classes. Each video spans 30 seconds and comprises
of 6 unit-actions, on average. This is why we choose Charades, as it fits perfectly to the
needs of this work. For evaluation, we use mAP, as detailed in [144].

4.4.2 Experiments on Benchmarks

In this section, we experiment and evaluate VideoGraph on benchmark datasets: Break-
fast, Charades and Epic-Kitchens, and we compare against related works. We choose
two strong methods to compare against. The first is Timeception [73]. The reason is
that it can model 1k timesteps, which is up to a minute-long video. Another reason
is that Timeception is an order-ware temporal method. The second related work is
ActionVLAD [50]. The reason is that it is a strong example of orderless method. It also
can aggregate temporal signal for very long videos.

VideoGraph resides on top of backbone CNN, be it spatial 2D CNN, or spatio-temporal
3D CNN. So, in our comparison, we use two backbone CNNs, namely ResNet-152 [62]
and I3D [15]. By default, I3D is designed to model a short video segment of 8 frames.
But thanks to the fully-convolutional architecture, I3D can indeed process minutes-long
video. This is made possible by average pooling the features of many videos snippets, in
logit layer, i.e. before softmax activation [15]. ResNet-152 is a frame-level classifier. To
extend it to video classification, we follow the same approach used in I3D and average
pool the logits, i.e. before softmax. In all the following comparisons, we use 512 frames,
or 64 segments, per video as input to I3D. And we use 64 frames per video as and input
to ResNet-152.

Breakfast. Each video in this dataset depicts a complex breakfast activity. Thus, the
task inhand is single-label classification. The evaluation metric used is the classification
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(a) (b)

Figure 25: Visualization of the learned graph nodes. In the first 20 epoch during training
(left), VideoGraph updates the node features Ŷ to increase the pairwise distance between
them. That is, VideoGraph learns discriminant representations of the nodes. In the last
20 epoch during training (right), the learning cools down and barely their representation
is updated. We visualize using t-SNE [112].

accuracy. We experiment our model on Breakfast, and we compare against baseline
methods. The results are reported in table 11.

Epic-Kitchens. When comparing VideoGraph against related works, see table 11, Time-
ception and VideoGraph, we notice that we are on bar with Timeception. VideoGraph
performs better when trained on single-label video dataset, where each video has one
label. This gives VideoGraph an ample opportunity to tailor the graph-inspired rep-
resentation for each class. However, as mentioned, we pose the task in Epic-Kitchen
as multi-label classification. That is, no single category for a video. That’s when
VideoGraph does not perform as good.

Charades. In this experiment, we evaluate our model on Charades dataset. And we
compare the performance against recent works. The results are reported in Table 10.
VideoGraph improves the performance of the backbone CNN. For VideoGraph, Charades
is particularly challenging dataset, for two reasons. First, the average video length is 30
seconds, and VideoGraph learns better representstion for long-range videos. Second, it is
a multi-label classification, and that’s when VideoGraph is not able to learn category-
specific unique graph.
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Figure 26: The pairwise Euclidean distances between normalized latent concepts Ŷ
increases rapidly in the beginning of the training, but it converges in the end.
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(a) Making Cereals (b) Preparing Coffee (c) Frying Eggs (d) Making Juice (e) Preparing Milk

(f) Making Pancake (g) Making Salad (h) Making Sandwich (i) Scrambled Eggs (j) Preparing Tea

(k) Top related images to the nodes. These nodes are related to:  cereal,  pan,  eggs,  
sandwich,  kettle, and  foodbox.

Figure 27: We visualize the relationship discovered by the first layer of graph embedding.
Each sub-figure is related to one of the 10 activities in Breafast dataset. In each graph,
the nodes represent the latent concepts learned by graph-attention block. Node size
reflects how dominant the concept, while graph edges emphasize the relationship between
these nodes.
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4.4.3 Learned Graph Nodes

The proposed node attention block, see figure 24a, learns latent concept representation
Ŷ using fully-connected layer. This learning is conditioned on the initial value Y . We
found that this initial value is crucial for VideoGraph to converge. We experiment with 3
different types of initialization: i. random values, ii. Sobol sequence and iii. k-means
centroids. Random values seems to be a natural choice, as all the learned weights in the
model are randomly initialized before training. Sobol sequence is a plausible choice, as
the sequence guarantees low discrepancies between the initial values. The last choice has
proven to be successful in ActionVLAD [50]. The centroids are obtained by clustering
the feature maps of the last convolutional layer of the backbone CNN. However, we do not
find one winning strategy across the benchmarks used. We find that Sobol sequence is the
best choice for training on Epic-Kitchens and Charades. While the random initialization
gives the best results on Breakfast. In table 10, we report the performance of VideoGraph
using different initialization choices for the latent concepts Y . In all cases, we see in
figure 25 that the node attention layer successfully learns discriminant representations of
latent concepts, as the training proceedes. In other words, the networks learns to increase
the Euclidean distance between each pair of latent concepts. This is further demonstrated
in figure 26.

Initialization Epic-Kitchen mAP Breakfast Acc.

Random 54.12 69.45
Sobol 55.46 65.61
K-means Centroids 52.47 —

Table 12: The initialization of the latent concepts is crucial for learning better represen-
tation Ŷ . We experimented with 3 choices: random, sobol, and k-mean clustering. Yet,
there seems not to be one winning choice across different datasets.

4.4.4 Learned Graph Edges

There are two types of graph edges, i.e. relationships, uncovered by VideoGraph. First,
the timewise edges, i.e. how the nodes transition over time. Second, the nodewise
edges, i.e. relationships between nodes themselves. To this end, we depend on the
activation output of the second graph embedding layer. In other words, we extract
the ReLU activation values. For M videos belonging to a specific human activity, the
activation values are z1 ∈ RM×N×T×C , where C is the number of channels, T is the
number of timesteps, and N is the number of nodes. First, we average the activations
for all the videos, resulting in z2 ∈ RN×T×C . Then, we average pool the activations over
the temporal dimension, so we have z3 ∈ RN×C , summarizing the nodes representations
for all the videos belonging to the specific activity. Finally, we measure the pairwise
Euclidean distance between each pair in z3. To plot the graph depicting the activity,
we use these distances as the edge between the nodes. And to plot the nodes, we sum
up the activations over the channel dimension in z3. The result z4 ∈ RN is a scalar
value reflecting the importance of the node to the activity. The graph is plotted using
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Fruchterman-Reingold force-directed algorithm, implemented in [58]. Figure 27 shows
10 different graph, each belonging to one human activity.

Importance of Temporal Structure. In this experiment, we validate by how much
VideoGraph depends on the temporal structure and weak temporal order to recognize the
human activities. To this end, we choose Breakfast, as it is temporally well-structured
dataset. VideoGraph is trained on ordered set of 64 timesteps. We alter the temporal
order of these timesteps and test the performance of VideoGraph. We use different
alterations: i. random order, and ii. reversed order. Then, we measure the performance
of VideoGraph, as well as baselines, on Breakfast testset.

Temporal Structure Reversed (↓%) Random (↓%)

I3D 0.0 0.0
I3D + ActionVLAD 0.0 0.0

I3D + Timeception 44.1 56.2
I3D + VideoGraph 22.5 55.9

Table 13: The drop of performance of VideoGraph and other models when changing
the temporal order of the input video. Both VideoGraph and Timeceptions suffer huge
drop in performace, as both are order-aware methods. On the other hand, ActionVLAD
retains the same performance, as it is orderless method.

We notice, from table 13, a huge drop in performance for both VideoGraph and
Timeception. However, as expected, no drop in performance for ActionVLAD, as it
is completely orderless model. The conclusion is VideoGraph encodes the temporal
structure of the human activities in breakfast. Added to this, it suffered slightly less
drop in performance than Timeception. More importantly, figure 28 shows the confusion
matrix of classifiyng the videos of Breakfast using two cases: i natural order of temporal
video segments, and ii. random order of the video segments. We notice video graph
makes more mistakes when trained on random order. It mistakes “scrambled egg” for
“fried egg” if temporal order is neglected.

1 2 3 4 5 6 7 8 910
cereals 1
coffee 2

fried egg 3
juice 4
milk 5

pancake 6
salat 7

sandwich 8
scrambled egg 9

tea 10

1 2 3 4 5 6 7 8 910

Figure 28: Confusion matrix for recognizing the 10 activity of Breakfast. VideoGraph is
trained on random (right) v.s. correct temporal order (left). It mistakes “scrambled egg”
for “fried egg” if temporal order is neglected.
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4.5 C O N C L U S I O N

To successfully recognize minutes-long human activities such as “preparing breakfast”
or “cleaning the house”, we argued that a successful solution needs to capture both
the whole picture and attention to details. To this end, we proposed VideoGraph, a
graph-inspired representation to model the temporal structure of such long-range human
activities. Firstly, thanks to the node attention layer, VideoGraph can learn the graph
nodes. This alleviate the need of node-level annotation, which is prohibitive and expen-
sive in nowadays video dataset. Secondly, we proposed graph embedding layer. It learns
the relashionship between graph nodes and how these nodes transition over time. Also,
it compresses the graph representation to be feed for a classifier. We demonstrated the
effectiveness of VideoGraph on three benchmarks: Breafast, Epic-Kitchens and Charades.
VideoGraph achieves good performance on the three of them. We also discussed some of
the upsides and downside of VideoGraph.
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P E R M U TAT I O N I N VA R I A N T C O N VO L U T I O N F O R
R E C O G N I Z I N G L O N G - R A N G E AC T I V I T I E S

5.1 I N T RO D U C T I O N

Long-range human activities are famous for being lengthy [99]. Their composition is
diverse [73], and their temporal structure is weak [74]. For example, the activity of
“preparing coffee” shown in figure 29. This activity takes some ten minutes to unfold.
It consists of many short segments of actions, called unit actions [99]. For “preparing
coffee”, unit actions include “taking cup” or “pouring milk”, among many others. A unit
action, by itself, spans only a few seconds, and exhibits a coherent temporal structure.
However, the temporal order of all unit actions in the context of “preparing coffee” is
not strict, and changes from one video exemplar to another. By how many ways one can
“prepare coffee”? And by which specific order of unit actions? That is to say, there is a
considerable variation of inputs when processing long-range videos. And learning these
variations using temporal neural networks is progressively more challenging.

There are three main approaches for modeling the temporal structure of long-range
activities. The first approach relies on temporal convolutions [15, 73]. They encode
long-range activities as rigid patterns [15] by decomposing them on the receptive fields
and by cascading over multiple time scales [73,104]. However, the temporal convolutions
in the reference are not capable of handling changes in the temporal order. The second
approach is vector aggregation [31, 50], which ignores temporal locality at all. With the
temporal locality, however, also temporal refinement is lost including the ability to learn
hierarchical temporal abstractions of varying granularity. Hence, vector aggregation
is less suited for long-range activities. The third approach relies on self-attention and
transformer networks [176, 179] using key-value pair of vectors to capture long-range
dependencies. As the key-value pairs are inferred from the input signal [164] similar
to meta-learning [38, 137, 168], self-attention approaches are easily disturbed by noisy
inputs in long-range activities.

This work proposes a new approach for long temporal modeling, coined Permutation
Invariant Convolution, or PIC for short. PIC is designed to have the same benefits
and none of the drawbacks of the three aforementioned approaches. Unlike standard
convolutions [15], PIC is designed to be invariant to temporal permutations within the
local temporal receptive field. And, different from vector aggregation [31, 50] and self-
attention [176] approaches, PIC respects temporal locality. Therefore it is able to learn
temporal abstraction and deep temporal structure. And last, while adopting a key-value

In submission to European Conference on Computer Vision (ECCV), 2020 [75]
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𝑣1

𝑣2

𝑣𝑛

…
 

Figure 29: Given a few video examples v1, v2, v3 of the human activity “Preparing
Coffee”, one video consists of a some unit actions, e.g. “take cup”, “stir coffee” or

“pour milk”. PIC, Permutation Invariant Convolution, recognizes long-range activities
using multiple levels of abstractions. On the micro-level of a short segment s1, PIC
models the correlation between unit-actions, regardless of their order, repetition or
duration, s1={ fu, fu} = { fu, fu, fu}. On the macro-level, PIC learns the interactions
between segments.

pairs strategy [176], PIC does not infer them from the input data. As a result, PIC is more
robust to spatio-temporal noise than existing approaches when recognizing long-range
activities. In the end, PIC enables off-the-shelf spatial (2D) and short spatio-temporal
(3D) convolutional networks (CNNs) to comfortably process long frame sequences, thus
recognizing long-range human activities.

5.2 R E L AT E D W O R K

Short-range Activities. Recognizing short- and mid-range actions is a fundamental
task in video understanding. These actions usually take up to 10 seconds to occur. For
example, actions in sports, such as UCF [148], Sports-1M [90], or human interactions,
such as Kinetics [91]. To address these benchmarks, literature propose methods for
modeling the pattern, structure [104], order [46], and motion [78, 169] of the temporal
signals.

Long-range Activities. There is a recent interest in understanding long-range activities,
which brings news challenges. The reason is that these activities are complex [73],
take longer to unfold [99] and are harder to model their temporal structure [74]. New
benchmarks are proposed, such as Charades [144], Epic-Kitchens [26], Breakfast [99],
MultiThumos [77, 188], YouCook [196] or Tasty [140].

This work focuses on modeling and recognizing long-range human activities. After a
closer look into the related literature of only long-range modeling, one can conclude the
prevalence of three approaches: convolution [73], self-attention [176, 179], and vector
aggregation [31, 50], see figure 30.

Convolution. In this vein, convolutional kernels learn to detect patterns within a local
window, i.e. receptive field. Then, using a cascade of layers, convolution can learn
multiple levels of abstractions [97, 147]. So, one can simply attribute the success of
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Local Features Video Features 
 

Video Features 

Shared 
Centroids 

Keys Shared 
Weights 

(b) Vector Aggregation (c) Convolution (a) Self-Attention 

Values 

(a) Self-attn. (b) Vector Agg. (c) Conv. PIC
Permutation Invariance 3 3 3

Shared Weights 3 3 3

Temporal locality 3 3

Figure 30: Compared to other temporal modeling layers, PIC has three benefits. i.
Temporal locality to learn long-range temporal abstractions using a cascade of layers.
ii. Shared weights (i.e. key-value kernels) to detect the discriminant concepts. iii.
Invariant to the temporal permutation within the receptive field, better for modeling weak
structures.

convolutional models to two factors: respecting temporal locality and learning complex
representations using cascaded layers. The outcome is many successful CNN architec-
tures for image [62, 97] and action understanding [80, 146], temporal localization [31],
and sequential modeling [45].

However, temporal convolutions are sensitive to the temporal order, even with multi-
scale kernels [73,151]. Differently, this work proposes PIC, which is invariant to temporal
permutation and more permissive to the many temporal configurations exhibited by a
long-range activity.

Self-attention. Attention is extensively used in many tasks as image captioning [185],
temporal detection [141] and action recognition [30, 108]. Recently, self-attention shows
success in machine translation [164] thanks to using a pair of vectors, namely key-value.
Self-attention is adopted by various methods for graph representation [166], image
recognition [176], and video understanding [48, 179].

Though, the limitation of self-attention [176] is twofold. First, it ignores temporal
locality, which is fundamental to learning multiple levels of abstractions [129]. Second,
the key-value pairs are inferred from the input, which limits their recognition ability [102].
In contrast, PIC uses weight sharing of the key-value pairs for a better filtering of the
visual evidence in a noisy and long activity. Weight sharing is paramount to not only
convolution but also to self-attention [102].

Vector Aggregation. This line of work pool feature representations of video frames
over long-range sequence. Simple pooling methods is used as max [72], attention [49],
and gating [118]. While others opt for more complex aggregation as Vlad [31, 50] and
Fisher Vectors [124]. The upside of such methods is scaling up to long-range activities
and being invariant to their scale, order and repetition.
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Nevertheless, the downside of vector aggregation is that the temporal locality is
ignored, and the temporal structure is overlooked. That’s why Vlad methods opt for only
one layer of temporal modeling. As an alternative, PIC regards temporal locality, thus
able to learn multiple levels of abstractions using cascaded layers.

5.3 M E T H O D

First, we introduce PIC, Permutation Invariant Convolution, and discuss its novelties
over existing layers for temporal modeling: convolution [73], self-attention [176] and
vector aggregation [50]. Then, we describe how it can be fitted on top of modern CNNs.
Finally, we detail the final model architecture and its implementation.

5.3.1 Motivation

The structure of the long-range activities can be thought of partially ordered sets, which
constitute multiple levels of abstractions. On the macro-level, the entire video v of
long-rage activity consists of a few segments v={s1, s2, s3, ...}, But on the micro-level,
each segment si consists a few highly-correlated unit actions, albeit with no particular
order or number of repetitions. Take for example the activity of “preparing coffee”,
see figure 29. One segment contains the unit actions s1={“take cup”, “pour coffe”},
while another comprise s2={“pour sugar”, “spoon sugar”, “pour milk”}, and so on so
forth. It is demonstrated by [73] that the multi-level structure of long-range activity can
be learned using convolutional approach with a cascade of layers. The bottom layers
learn the correlation between the unit actions within each segment, while the top layers
learn the interactions between the segments. First, we discuss the standard temporal
convolution, and its limitation in modeling the chaotic structure of long-range activities.

Standard Temporal Convolution. As we are interested in temporal modeling, we omit
the spatial dimensions and focus only on the temporal dimension, for clarity. For which,
the temporal convolution works as follows. It relies on a learned kernel W = {wi | i ∈
[1, ..., T ]}, W ∈ RT×C , where T , C are the kernel size and dimension, respectively. At the
i-th timestep, the input feature in a local window Xw = {xi | i ∈ [1, ..., T ]}, Xw ∈ RT×C .
This input feature Xw is convoluted (~) with the kernel W, the output feature map is
y ∈ R1×1. So, standard temporal convolution is formulated as

y = W ~ Xw =
T∑

i=1

wi � x>i . (5.1)

With this operation, the kernel W learns to detect the exact temporal order of the se-
quence Xw. However, the downside is that this operation is sensitive to the precise
sequential order of Xw. In other words, standard temporal convolutions are not per-
missive to the many temporal configurations a sequence of unit actions can take place
in a long-range activity. For example, there is no one particular order by which the
sequence {“pour sugar”, “take cup”, “pour milk”} can occur in the activity of “preparing
coffee”. One possible solution is multi-scale convolutions [73]. They can model temporal
sequences that differ in their temporal extent. However, they are still sensitive to the
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temporal order. Another possible solution is using more convolutional kernels, such that
each learns a different temporal order. This solution is computationally prohibitive, and
cannot account for all possible permutations, especially for longer temporal patterns.

So, to successfully model long-range activities, a strong requirement is that the
convolution operation has to be invariant to the temporal order of unit actions within the
local window, i.e. within the receptive field. For there exist many ways one can perform
the activity of “preparing coffee”, with no strict order. To this end, we propose PIC,
an invariant convolutional operation to replace the standard convolution for temporal
modeling of long-range activities.

… 
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Similarities (𝑠) 
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Values (𝑉) 
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Figure 31: Given a segment of human activity of N frames, each is represented using
off-the-shelf CNN as a feature x. Our method, Permutation Invariant Convolution (PIC),
operates on the temporal axis of the features using sliding window approach, where the
window size is T . In other words, at certain temporal window, it operates on the features
x1, x2, ....xT . Using a pair of Key-Value kernels (K, V), it models the correlation between
the visual evidences { fu, fu, fu} in a local window with Xw = {x1, ..., xT } irrespective of
their the temporal order.

5.3.2 PIC: Permutation Invariant Convolution

The goal is to make the standard convolution permissive to the weak temporal order of
long-range activities. We propose PIC, Permutation Invariant Convolution, see figure 31.
PIC takes as an input the features Xw in a local window. To model their correlations
regardless of their order, PIC uses a pair of kernels, inspired by self-attention opera-
tion [164, 176]. The pair is demoted as the keys K ∈ RM×C and the values V ∈ RM×C ,
where M is the number of kernels, and C is the kernel dimension. The keys K are known
to act as a detector for M latent visual concepts. Using an outer product ⊗ between
the keys K and all the features of the local window Xw, we get the similarity matrix
s ∈ RM×T . Intuitively, s encodes the possibility of any of the M latent concepts to ever
exist in the local window. By max-pooling the similarities s over the temporal dimension
of the local window, we get s′ ∈ RM×1. We interpret s′ as the maximum possibility of
M concepts to take place in the local window.
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After obtaining the maximum similarities s′, we opt for values kernel V to represent
only those detected. The main purpose of using a pair of kernels K, V instead of one
is twofold. First, using a pair enables PIC to decouple detecting the concepts using the
keys K, from representing them with the values V . Decoupling is proposed by [164] and
successfully used in [176]. Second, by decoupling the kernels, we can have more keys
K ∈ RM×C for detection and less values V ∈ RM′×C for representation, where M′ � M.

The next step is using a dense layer fθ(·) to model the correlation between the maxi-
mum similarities s′, and also to embed them from a higher dimension RM×1 to a lower
dimension RM′×1. Then, an activation σ = ReLU is used to rectify the similarities,
resulting in the activated similarity α ∈ RM×1. The final step is an inner product �
between the similarities α and the values V to arrive at the final representation y ∈ R1×C .
PIC is formulated as

s = K ⊗ X>w (5.2)

s′ = max row(s) (5.3)

α = σ [ fθ(s′)] (5.4)

y = α> � V . (5.5)

𝑔𝜙 

𝑋𝑤 𝑇 × 𝐶 

PIC 

𝑇 × 𝐶′ 

𝐾 V 

M × 𝐶′ M × 𝐶′ 

𝜓 
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1 × 𝐶′ 

1 × 𝐶 

 + 

Figure 32: PIC layer models only the temporal dimension. It has shared kernels K, V to
learn discriminant concepts. A residual bottleneck is used to reduce computation.

PIC Layer. After outlining the PIC operation, now we discuss how PIC can be used as
a modular layer. PIC is a convolutional neural layer placed on top of backbone CNNs
– be it 2D or 3D, see figure 32. It draws inspirations and design principles from a few
related works [73, 176, 181]. In total, we list four design principles that govern PIC
layer. i. PIC uses a residual bottleneck for reducing the computation [62, 181]. Before
convolving the input features Xw ∈ RT×C with PIC, their dimension is reduced from C
to C′ = C/4 using a dense layer gφ(·). And to enable residual connection, the input
dimension C is recovered by another dense layer hψ(·). ii. Instead of using one kernel
as in standard convolution, PIC uses a pair of key-value kernels (K, V) [164, 176], to
decouple concept detection from concept representation. iii. PIC focuses on modeling
only the temporal dimension [73], leaving the spatial dimensions for the backbone CNN
to handle. iv. Similar to the kernels of standard convolution, the kernels K, V learned
by PIC are shared weights, i.e. model parameters, and are not inferred from the window
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features Xw. While in [176], the keys and values K, V are inferred from the input Xw. The
upside of having shared kernels K, V is the ability to detect the most representative visual
concepts across the entire long-range activity, and not being conditioned on the visual
signals in a narrow local window. This is an important design choice for modeling such
activities, particularly when we do not know if Xw ever contains informative or noisy
evidence. In addition, PIC respects temporal locality. In other words, it convolve the
features of local windows Xw, in contrast to global windows used in self-attention [176].
temporal locality enables PIC to learn multiple levels of abstractions with cascaded
layers.

5.3.3 Final Model

We start with an off-the-shelf backbone CNN, be it 2D CNN as ResNet [62] or 3D
CNN as I3D [15]. Then, we stack a cascade of four PIC layer layers on top of the last
convolution layer of the backbone CNN. Each layer consists of PIC convolution followed
by BatchNorm for normalization, LeakyReLU for activation, and MaxPool with
stride 2 for downsampling. Given a video v of long-range activity, we uniformly sample
N segments v = {s j | j ∈ [1, ...N]}. Each segment s j consists of L = 8 successive video
frames, and is processed by the backbone CNN, up to the last convolution layer. The
output convolutional feature is x j ∈ R1024×7×7. We call x j the feature of the j-th timestep,
because it corresponds to the j-th segment of the video. The video-level features are then
X = {x j | j ∈ {1, ..., N}, where N is the temporal dimension, or the number of timesteps.
To model the temporal structure of the entire video v, we feed-forward the features X to
the cascade of PIC layers. Thanks to using a downsampling with stride 2, and four PIC
layers in the cascade, the temporal footprint of the input features X is reduced to N/4.
And so, the output feature is Z ∈ R1024×7×7×N/4. For video classification, Z is pooled
over the spatial and temporal dimensions, and feed-forwarded to a two-layer MLP with
BatchNorm and ReLU. The MLP uses softmax and sigmoid as the last activation
functions for the tasks of single-label and multi-label classification, respectively.

Implementation. For each dataset, we follow a two-stage procedure to train our final
model. In the first stage, the backbone CNN is pre-trained on the dataset at hand. We
follow the same training details provided by the authors of the backbone CNN, for
example I3D [15]. In the second stage, the cascade of PIC layers is placed on top of the
last convolutional layer of the backbone CNN. Only PIC layers, along with the classifier,
are trained on the dataset at hand, while the backbone is kept frozen. The model is
trained for 100 epochs and with batch size 32. For optimization, we opt for SGD with
0.1, 0.9 and 1e-5 as the learning rate, momentum and weight decay, respectively. Also,
we experiment Adam with 0.01 and 1e-4 as the learning rate and epsilon ε, respectively.
TensorFlow [5] and Keras [22] are used for implementation. Code is made public upon
publication.

5.4 E X P E R I M E N T S

Next, we validate quantitatively and qualitatively PIC on three different benchmarks:
Charades [144], Breakfast [99], and MultiTumos [188]. We compare against three
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state-of-the-art approaches for modeling temporally long video sequences: the non-local
networks [176] representing the self-attention approach, ActionVlad [50] representing the
vector aggregation approach and Timeception [73] representing the temporal convolution
approach. Moreover, we perform an ablation study of PIC properties.

5.4.1 Datasets

Charades [144] is video dataset for multi-label action classification, with total number
of 157 unit-action classes. It contains 8k, 1.2k and 2k videos for training, validation
and test splits, respectively (67 hrs for training split). Each video can be thought of a
long-range human activity. On average, each video is 30 seconds and contains 6 different
unit actions. Since the videos of Charades are multi-labeled, we opt for the mean Average
Precision (mAP) as the evaluation metric.

Breakfast [99] contains 1712 video, split into 1357 and 335 videos for training and
testing, respectively. The videos depict unscripted human activities of cooking in the
kitchen. The videos are long-range, with 2.3 minutes as the average video length. The
main task is to classify these videos into 10 classes of breakfast activities. It is a single-
label classification task – each video has only one label. Thus, the classification accuracy
(%) is the evaluation method.

MultiThumos [188] contains 400 videos, split into 200 and 213 for training and testing,
respectively. The videos depict human activities in sports. Originally, the dataset is
used for temporal localization and segmentation of these human actions. Over the entire
dataset, there exist 65 action classes. Recently, this dataset is repurposed by [73] for
multi-label classification of each long-range video. We adopt the same experimental
setup as suggested by [73]. And we use the mAP for evaluation.

5.4.2 Dissection of PIC

As presented earlier, PIC is better suited for recognizing long-range activities, thanks to
three favorable properties: i. invariance to permutation, ii. respecting local connectivity,
iii. using shared weights of key-value pairs. In the following experiments, we dissect
the PIC layer to highlight the individual importance of each of these three properties.
We use Breakfast [188] as the main dataset to conduct the dissection experiments (i.e.
ablation studies).

Permutation Invariance. PIC is, by design, invariant to the temporal permutations
within windows of local connectivity. It achieves so by two operations: outer product
⊗ between the input Xw and the keys K in equation 5.2, and the max row(·) operation in
equation 5.3. To examine the importance of invariance, we build a variant of PIC, named
PIC-Ordered. In which, we convolve ~ the input Xw with K instead of using outer product
⊗. And we remove the max row(·) operation, thus making PIC-Ordered dependable on
the temporal order within the local window Xw. PIC-Ordered is formalized as

α = K ~ X>w , y = α> � V . (5.6)
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Then, we train baselines accordingly and measure the performance. Timeception is
included in this comparison, as it is a multi-scale convolutional layer, and able to handle
slight temporal permutations.

Uniform 

𝑣 

Coarse Perm 

Fine Perm 

Figure 33: Three different ways of sampling timesteps from a test video: uniform, coarse,
and fine permutation.

Baseline Uniform Coarse Perm. Drop ↓ Uniform Fine Perm. Drop ↓

Timeception 84.6 82.2 2.4 84.6 81.9 2.7
PIC-Ordered 80.2 77.6 2.6 80.2 76.3 3.9

PIC 87.5 87.0 0.5 87.5 86.7 0.8

Table 14: Being invariant to permutations, PIC is affected the least by altering the
temporal order of test videos.

During testing, we use three different ways to sample N timesteps from a test video:
i uniform, ii. coarse permutation, and iii. fine permutation, see figure 33. The reason
is that we want to introduce randomness to the temporal order, and measure how the
baseline methods perform in such cases. Different samplings are used, and the sampling
mechanism is as follows. Given a test video v, if we uniformly sample 8 segments
v = {1, ..., 8}, then coarse perm. is v = {1, 2, 5, 6, 3, 4, 7, 8}, while fine perm. is
v = {1, 3, 5, 7, 2, 4, 6, 8}. Worth mentioning that the during training, the sampling is
always uniform.

Results are reported in table 14. Our observation is that not only PIC outperforms
other layers, but also has the lowest drop in performance in both cases of fine and coarse
perturbations of the temporal information. In addition, we notice that Timeception is
slightly more tolerant to perturbations, thanks to its multi-scale kernels. The conclusion
is that PIC is more permissible than others to the many ways a long-range activity can
happen.

Local v.s. Global Connectivity. PIC is a convolution layer with a temporal receptive
field of size T . That’s to say, given N features corresponding to N timesteps of a video,
PIC operates on local windows, each of size T , where T � N. This gives PIC the ability
to learn temporal abstractions of long-range activities at different layers of the network.
Our assumption is, if a temporal layer is globally connected to the entire video, then
there is no need to cascade multiple layers, as this layer would already summarize all the
visual evidence in this video. Note that local connectivity is fundamental to convolutions
as well as self-attention [129]. To test this assumption, we devise a variant of PIC, called
PIC-Global, that is not restricted by a window size. Its receptive field is as big as the
input video T=N. Then, we train baselines fitted with PIC-Global and PIC. In this
comparison, we include ActionVlad and Nonlocal, as both are temporal layers with
global receptive field.
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Baseline
Accuracy (%) @ Layer

1 2 3 4

ActionVlad 83.07 — — —
Nonlocal 82.29 83.33 83.07 83.29
PIC-Global 86.76 85.68 85.68 85.42

Timeception 83.85, 84.90 85.30 86.93
PIC 86.20 87.72 88.02 89.84

Table 15: Having a local receptive field enables PIC to learn levels of abstractions at
multiple layers. Thus, improving monotonically by stacking more layers. Others don’t
witness the same benefit, as they use global receptive field.

As shown in table 15, both Timeception and PIC improve monotonically by stacking
more layers. In contrary, the other layers witness a performance plateau after the first or
second layer is the stack. The conclusion is that, the complexity of long-range activities
can be captured by a temporal layer of local receptive field. And over a cascade of layers,
the entire complexity is learned.

Shared v.s. Inferred Kernels. Inspired by the self-attention [164, 176], PIC uses a pair
of kernels K, V to learn latent concepts. But the difference is that, in PIC, these kernels
are shared, and not inferred from the input video as in [176]. In short-range videos, it
is acceptable to have K, V inferred from a sampled segment from the video, it usually
contains most, if not all of the representative visual evidence. But in long-range video,
the sampled segment might not contain all the evidences. To verify the importance of
shared kernels, we construct a variant, named PIC-Inferred. In which, the pair K, V
are inferred from the input features Xw using two dense layers gγ(·), gλ(·), similar to
Nonlocal [176]. It is formulated as

K = gγ (Xw) , V = gλ (Xw) . (5.7)

Then, we train baselines and compare their results. We include Nonlocal in this compari-
son, as it also uses inferred kernels K, V . The outcome is reported in table 16. We observe
that PIC outperforms the other baselines by a considerable margin. The conclusion is,
when it comes to modeling the long-range activities, its important for the convolutional
temporal layers to use shared kernels.

Baseline
Accuracy (%) @ Layer

1 2 3 4

Nonlocal 82.29 83.33 83.07 83.29
PIC-Inferred 82.55 83.85 84.90 84.64

PIC 86.20 87.72 88.02 89.84

Table 16: Thanks to sharing the kernels (K, V), PIC is better at learning concepts than
layers with inferred kernels.
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Studying PIC

5.4.3 Analysis of PIC

PIC in a modular temporal layer that resides on top of existing backbone CNNs – be it
2D as ResNet or 3D as I3D. To better utilize it for these CNNs, we analyze the upsides
and downsides of PIC. And we study three factors: i. effectiveness v.s. efficiency., ii.
optimal sizes of receptive field and downsampling, iii. extensibility to input video length,
and iv. scalability with backbone CNNs.

Effectiveness v.s. Efficiency. In this analysis, we demonstrate that PIC is an efficient
layer for temporal modeling. Also, we show that PIC scales sub-linearly using deeply
cascaded layers. We compare against other layers for temporal modeling. Most notably,
we include Timeception [73], as it is known for its efficiency. When quantifying the
efficiency, we use four metrics: i. CPU feedforward time in milliseconds, ii. number of
model parameters in millions, iii. number of floating point operations in mega FLOPs,
and iv. classification accuracy of Breakfast activities.

As shown in figure 34, PIC is very efficient layer, and it scales sub-linearly when
stacked. One observation is that Timeception and PIC are the most efficient layers,
and both brings about monotonic improvements in the accuracy using cascaded layers.
Nevertheless, PIC outperforms Timeception by a considerable margin. We conclude from
this analysis that PIC achieves the best tradeoff between efficiency and effectiveness.
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Figure 34: On x-axis, the number of stacked layers. While on y-axes, the the efficiency of
temporal layers using four metrics: i. CPU feedforward time (milliseconds), ii. model
parameters (millions), iii. number of operations (mega FLOPS), and iv. classification
accuracy (%). PIC has the best tradeoff between efficiency and effectiveness.

Size of Receptive Field and Downsampling. PIC is, in principle, a convolutional
operation applied to windows of local connectivity along the temporal dimension of
long-range activities. As such, two of its most important hyperparameters are the window
size and downsampling size. Here, we experiment different configurations to arrive at
the best choice. For this, we use two layers of PIC, each of window size T and followed
by a max-pooling operation for downsampling, with stride s.

Our observation is that, while increasing the window size helps PIC to have a bigger
receptive field, this improvement degrades for T > 9. Based on this analysis of Breakfast
dataset, the recommended window size is T = 9. As for the downsampling, we find that
s = 2 is the optimal stride, while more aggressive strides s = {3, 4} are detrimental.

Number of Latent Concepts. PIC makes used of shared pair of kernels (K, V), where
M, M′ are the number of K and V respectively. In our experiments, we found that
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Stride Size (s)
Window Size (T )

3 5 7 9 11

2 86.98 86.98 87.24 88.02 87.50
3 86.98 86.72 86.98 86.20 86.20
4 85.68 85.68 85.94 85.42 85.68

Table 17: PIC accuracy when changing the convolution window size T and the down-
sampling stride size s.

choosing these hyperparameters is of importance to the accuracy. A rule of thump is, for
large datasets, as Charades, where there are many action categories, using large number
of keys and values M = M′ = {64, 128} is important. While in medium-scale datasets,
as Breakfast, we found that as little as M = M′ = {16, 32} would suffice.

5.4.4 Quantitative Analysis

Breakfast. We compare against three state-of-the-art temporal modeling layers. In this
experiment, stacking four layers was optimal for Timeception [73]. Also we report results
for Timeception after fine-tuning the backbone, as this yields higher accuracy than the
numbers reported originally [73]. For Non-local networks, we found that stacking two
layers yielded the best performance. For PIC we rely on a deep cascade of four layers.
We follow the same experimental setup for all methods and report results in table 18.
We observe that PIC comfortably outperforms all other methods, including the recent
method Timeception.

Method Backbone Accuracy (%)

3D CNN∗ I3D 64.31
3D CNN∗ + Timeception [73] I3D 69.30
3D CNN∗ + PIC I3D 73.62

3D CNN I3D 80.64
3D CNN + Vlad [8] I3D 82.67
3D CNN + Nonlocal [176] I3D 83.79
3D CNN + Timeception [73] I3D 86.93
3D CNN + PIC I3D 89.84

Table 18: We report the accuracy of classifying the minutes-long activities of Breakfast.
PIC outperforms the other baseline methods by a considerable margin. ∗ denotes that
the backbone CNN is not-fined tuned, so we can be compared with [73].

Charades. Different from the Breakfast dataset, Charades is even more challenging,
as it requires multi-label classification. On average, the complex video of Charades
consists of six unit actions. As Charades videos are noticeably shorter than Breakfast
videos, deep cascades of three PIC layers suffice. Furthermore, on this dataset, we
compare with other temporal modeling methods, as Timeception [73], as well as with
FeatureBanks [179]. We report results in table 19 using two different backbone CNNs,
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namely R101 and R101-NL, as in the latest literature [176]. We observe that PIC attains
the highest accuracy for all backbones.

Method Backbone mAP (%)

SlowFast [33] — 42.1
SlowFast-NL [33] — 42.5

3D CNN [176] R101 35.5
3D CNN + Timeception [73] R101 41.1
3D CNN + PIC R101 42.7

3D CNN [179] R101-NL 41.0
3D CNN + FeatureBanks [179] R101-NL 42.5
3D CNN + PIC R101-NL 43.8

Table 19: When classifying the complex multi-label actions of Charades, PIC layers
bring improvements over previous works.

MultiThumos. Last, we evaluate PIC on MultiThumos. We follow the same exper-
imental setup as suggested by [73] and use their backbone CNN without fine-tuning
on MultiThumos. We report results in table 20. We observe PIC obtains state-of-the
accuracy in recognizing the complex actions of MultiThumos.

Method Backbone mAP (%)

3D CNN I3D 72.43
3D CNN + Timeception [73] I3D 74.79
3D CNN + PIC I3D 78.31

Table 20: PIC improves over related works in recognizing the multi-labeled, long-range
videos of MultiThumos.

5.4.5 Qualitative Analysis

Visualizing Learned Concepts. PIC learns latent concepts using the key kernels K. We
visually interpret these kernels on Breakfast dataset. The model used is a cascade of
two PIC layers. We retrieve the top related video frames to each of the latent concept
as per the similarity values s′ in equation 5.3. We visualize results in figure 35. We
observe that the bottom PIC layer learns fine-grained concepts that are shared across the
activity categories of Breakfast. For example, in figure 35 the concept “pouring” is not
specific to a particular category – be it “preparing coffee” or “making tea”. Also, we
found that the concept “cutting” can be shared among different activities, as “making
salad” or “’making sandwich’. What is more, we observe that these discovered concepts
can either be object-centric or action-centric. An object-centric concept means that it
corresponds to single frames, like “food box”. While action-centric concept means that
it corresponds to short segments of unit actions, like “cutting”.
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Cutting (A07 Salad, A08 Sandwich)

A08

A07 

Pouring (A02 Coffee, A10 Tea)

A02 

A10 A01

Food Box (A05 Milk, A01 Cereals)

A05

Figure 35: In a cascade of PIC layers, we notice that in the bottom layer, the learned
concepts are fine-grained and independent of the activity category. For example, the
concept “pouring” is irrespective of activities “make coffee” or “make tea”. Also, these
concepts can be object-centric as “food box” or action-centric as “cutting”.

𝑥𝑁 𝑥1 

PermConv 

MaxPool 

PermConv 

Gobal Pool 

Making Pancake (6 Minutes)

Figure 36: This figure shows 16 frames uniformly sampled from an activity of “Making
Pancake”. After one layer, M concept kernels are learned to detect relevant visual
evidences. For simplicity, we show the activations of only one kernel per layer. In red,
the activations of one kernel in bottom layer. While in blue, the activations of another
kernel in the top layer.

Long-range Temporal Dependencies. Last, we visualize a conceptual overview of how
a two-layer PIC cascade operates on the frames of a long-range activity, see figure 36. In
each layer, we apply PIC convolution on sliding window along the temporal dimension.
Each layer learns a set of N kernels, where each kernel k learns a specific latent visual
concept. After the first layer, we downsample the temporal dimension and apply a second
PIC layer that learns a new set of latent concepts. For clarity, we show the activation of
only one kernel per layer. For example, the red color represents the activation of only
one kernel in the bottom layer. Notice how the same concept can be detected over the
entire video. While the blue color represents the activation of yet another kernel in the
top layer.

5.5 C O N C L U S I O N

This work introduces PIC, Permutation Invariant Convolution, a neural block dedicated
to the temporal modeling of long-range activities in videos. It has three properties.
First, being invariant to temporal permutations enable it to handle the chaotic temporal
orders of long-range activities. Second, it respects temporal locality, so it can learn deep
temporal abstractions using a cascade of layers. Third, it uses shared weights, namely
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key-value pairs, to learn the most representative visual signals in long and noisy videos.
We demonstrate the effectiveness of PIC layers, along with its three properties. Most
notably, we show how PIC enables existing CNNs to model long-range activities and
improve the performance. We benchmark on three datasets of long-range activities,
where we improves on the previous methods.
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T I M E G AT E : C O N D I T I O NA L G AT I N G O F S E G M E N T S I N
L O N G - R A N G E AC T I V I T I E S

6.1 I N T RO D U C T I O N

A human can skim through a minute-long video in a few seconds, and still grasp its
underlying story [154]. This extreme efficiency in temporal information processing raises
a question. Can a neural model achieve such efficiency in recognizing minutes-long
activities in videos?

Related works propose different CNN models with efficiency in mind [67, 192, 198].
However, such models [95] address only short-range actions, as in Kinetics [91], UCF-
101 [148], or HMDB [100]. On average, these actions take ten seconds or less, where
recognizing only a few frames would suffice [138]. However, this work focuses on
long-range activities, as in Charades [144], Breakfast [99] or MultiThumos [189]. These
activities can take up to a few minutes to unfold. Current methods fully process the entire
video of long-range activity to successfully recognize it [15, 175]. As a result, the major
computational bottleneck of such methods is the sheer number of video frames to be
processed.

Another solution is frame sampling [190]. The recently proposed SCSampler [96]
achieves efficiency by sampling the most salient segments from an untrimmed video
of short-range action. The sampling is conditioned on only the segment level, which is
plausible for short-range actions in trimmed videos, such as Kinetics [91] or untrimmed
videos, such as Sports-1M [90]. The reason is that, on the segment level, one can easily
tell if the segment is relevant to the action or it is just background, see figure 1. So,
segment-level classification probabilities would suffice for sampling [96]. In contrast,
long-range activities are known for being diverse and complex [73, 187]. Thus, the
importance of one segment to a certain activity is not self-described but rather depends
on the context, i.e. the long-range activity itself. That is to say, while a segment is
relevant to one activity, it is not relevant to another. So, sampling conditioned only on
the segment level is not the most optimal choice for long-range activities.

To address the limitations of the previous methods, we propose TimeGate, a two-stage
neural network for the efficient recognition of long-range activities without compromis-
ing the performance. Different from previous sampling methods, such as SCSampler,
TimeGate solves two problems. i. Conditional selection: when selecting segments
from the long-range activity, TimeGate is conditioned on both the segment- and context-
level features. Context-conditioning better suited for long-range activities than only

In submission to European Conference on Computer Vision (ECCV), 2020 [76]

79



T I M E G AT E : C O N D I T I O NA L G AT I N G O F S E G M E N T S I N L O N G - R A N G E AC T I V I T I E S

Short-range Action 

Long-range  Activity 

Disc  
Throw 
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Food 
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Figure 37: Top, short-range action “disc throw” in an untrimmed video. Based on each
segment, you can tell whether is it relevant (green) to the action or not (red). But in
long-range activities, middle and bottom, the importance of each segment is conditioned
on the video context. The segment “get food from cupboard” is relevant to “cook food”
but not to “washing dishes”.

the segment-conditioning of SCSampler. ii. Differentiable gating: the selection mecha-
nism of TimeGate is differentiable, so it is trained end-to-end with modern 2D and 3D
CNNs [15, 62], resulting in a better performance.

Our novelties are: i. Gating module for the conditional sampling of segments in videos.
Our gating is more suited to long-range activities than other methods, such as SCSampler.
The reason is that the sampling is conditioned on the segment- and context-level features.
ii. The proposed gating module is differentiable, which enables end-to-end training
with existing CNNs. iii. The proposed model, TimeGate, reduces the computational
cost of existing CNNs in recognizing long-range activities. In end-to-end training, the
cost is reduced even further. Finally, we conduct experiments and report the results on
three datasets for long-range activity recognition: Charades [144], Breakfast [99] and
MultiThumos [189].

6.2 R E L AT E D W O R K

Long-range Activities. Short-range actions, such as Kinetics [91] and UCF-101 [148],
have an average length of 10 seconds or less. Practically, they can be classified with
CNNs using as little as ten frames per video [172], and in some cases, even one frame
would suffice [138]. Therefore, building efficient CNNs is a plausible choice to reduce
the computational cost of recognizing short-range actions. However, in long-range
activities, such as Charades [144] and Breakfast [99], the activity can take up to five
minutes to unfold. Thus, requiring as many as a thousand frames [73, 74] to be correctly
classified. As such, analyzing all the frames using efficient CNNs is still computationally
expensive.

Nevertheless, having a mechanism to select the most relevant frames can boost ef-
ficiency [11]. Therefore, this work focuses on reducing the number of video frames
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needed for activity recognition. Though, our work is orthogonal to prior work of efficient
CNNs for action recognition.

Efficient Architectures. CNNs are the go-to solution when it comes to video classifi-
cation. Thus, one prospective of reducing the computation of video recognition is to
build efficient CNNs. Methods for pruning less important weights [59,61] or filters [106]
were previously proposed. Careful design choices result in very efficient 2D CNNs
such as MobileNet [66] and ShuffleNet [192]. These 2D CNNs are extended to their
3D counterparts, such as ShuffleNet3D and MobileNet3D [95], to learn spatio-temporal
concepts for video classification. Neural architecture search [197] is used to find the
lightweight NasNet-Mobile [198].

While efficient architectures are successful in the case of short-range actions, they are
not the most viable solution for long-range activities. The reason is that these activities
span up to a few minutes. Naively processing the video in its entirety undermines the
computation saved by these efficient CNNs. In other words, in the case of long-range
activities, the computational bottleneck is the sheer number of video segments needed to
be processed.

Conditional Computing. Another solution to reduce the computation is to dynamically
route the computational graph of a neural network. The assumption is that not all input
signals require the same amount of computation – some are complicated while others
are seemingly easy. Thanks to categorical reparameterization [79], it becomes possible
to discretize a continuous distribution, and effectively learn binary gating. In [165], a
dynamical graph is built by gating the layers of a typical CNN. While in [10, 20], the
gating is achieved on the level of convolutional channels. In the same vein, GaterNet [20]
proposes a separate gating network to learn binary gates for the backbone network.

Rather than gating the network layers, this work focuses on gating the video frames
themselves, to realize the efficiency in recognizing long-range activities. In all cases, our
work benefits from prior work of differentiable gating [79].

Sampling of Video Segments. Several works discuss frame sampling for short-range
videos. In [11], a student-teacher model for trimmed video classification is presented.
With reinforcement learning in [190], an agent predicts the next move. Most recently,
SCSampler [96] proposes a method for sampling salient segments in the untrimmed
videos of Sports-1M [90]. Conditioned on only the segment, it predicts a score for how
salient this segment is to the action.

Conversely, in long-range activities, the importance of each segment is conditioned
on not only the segment but also its context. Thus, SCSampler is less suited for such
activities. This work presents TimeGate, a novel selection method tailored for these
activities.

6.3 M E T H O D

6.3.1 TimeGate

Model Overview. TimeGate consists of two stages: timestep selector and video classifier,
see figure 38. The first stage is the selector, which consists of a lightweight CNN,
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Figure 38: Overview of the proposed model, TimeGate, with two stages. The first stage is
the timestep selector, left. Based on a lightweight CNN, LightNet, the model learns to
select the most relevant timesteps for classifying the video. This selection is conditioned
on both the features of timestep and its context. The second stage is the video classifier,
right. In which, only the selected timesteps (�X) are considered, while the unselected
timesteps (X) are completely ignored. In this stage, a heavyweight CNN, HeavyNet
is used for feature representation of only the selected timesteps, followed by MLP for
classification.

LightNet, followed by a novel gating module, see figure 39. Its purpose is to select the
most relevant timesteps from a minutes-long video. The second stage is the classifier. Its
purpose is to learn deep and discriminatory video-level representations for maximum
classification accuracy. Thus, it resides on top of a heavyweight CNN, HeavyNet,
followed by a Multi-Layer Perceptron (MLP) for classification. Only the timesteps
chosen by the first stage, the timestep selector, are considered by the second stage, the
video classifier.

Timestep Selector. The selector takes as an input a uniformly sampled T frames from a
long-range video v = { fi | i ∈ [1, ..., T ]}. All the frames are represented as convolutional
features X = {xi | i ∈ [1, ..., T ]}, X ∈ RT×C×1×1, where C is the number of channels. The
objective of the selector is to choose only a few of these features. In other words, we
want to select only the timesteps that are most representative of the activity in the video,
where each timestep is represented as a feature xi. Our hypothesis is that, a lightweight
feature representation using an efficient CNN, LightNet, would suffice for the selection.
Thus, the features X are obtained from the last convolutional layer of the LightNet, and
average-pooled globally over space, so the spatial dimensions of X are 1 × 1.

Concept Kernels. The next step is to take binary decision of considering or discarding
the timesteps. But how to decide if a timestep feature xi is relevant or not? Conceptually
speaking, a long-range activity consists of few yet dominant and discriminative visual
evidences, based on which, the video can be recognized [73]. Take for example “making
pancake”. One can easily discriminate it by observing the evidences “pancake”, “eggs”,
“pan”, and “stove”. These evidences can be thought of as latent concepts. To represent
them, we learn a set of concept kernels K = {k1, k2, ...kN}, K ∈ RN×C , where N is the
number of kernels, and C is the kernel dimension. K are randomly initialized and are
part of the network parameters. They are learned during the training of the selector. Our
concept kernels K are reminiscent of the centroids in ActionVlad [50].
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Figure 39: Bottom, the timestep selector learns concept kernels K to represent the most
representative visual evidence. Top, the gating module learns to select only a timestep
feature xi according to its importance to the current video.

Gating Module. The purpose of the gating module is to select the video timsteps, see
figure 39, top. The first step is to measure how relevant each timstep feature xi is to all
of the concept kernels K using an inner product �. The result is the similarity vector
si = K> � xi, si ∈ RN×1. Our understanding is that the vector si encodes how relevant
a timestep is to each of N concept kernels. Then, based on this similarity vector si, we
want to take a binary decision of considering or discarding the timestep feature xi. That’s
why we model the similarity vector si using a two-layer MLP fθ(·), with a single neuron
in the output layer, denoted as αi = fθ(si), ai ∈ R1.

Intuitively, αi is the gating decision corresponding to the timestep feature xi. Since αi
is a continuous variable, we cannot make a binary gating decision. Thus, we make use
of [79] to discretize αi to binary gating variable α̂i. More formally, following the gating
mechanism of [10], we add gumbel noise G to αi and follow with sigmoid activation,
thus α̂i = sigmoid(αi +G) .Then, we apply binary thresholding using the threshold
value δ = 0.5. So, we arrive at the binary gating value α̂i = I(δ>0.5)(δ), α̂i ∈ {0, 1}, see
figure 39, top. Finally, for gating the i-th timestep, we multiply its feature xi with the
binary value, resulting in the gated feature x̂i = xi · α̂i, x̂i ∈ RC×1×1.

Gating Activation. A problem with using binary thresholding for gating, as in [10], is
that during training, the classifier does not know out of the gated timestep features, which
is more relevant than the other. Each xi is multiplied by a binary value α̂i ∈ {0, 1}. As a
remedy, we propose clipped-sigmoid activation to replace the sigmoid activation
used in [10]. We find that this simply modified activation clipped-sigmoid is better
suited for timestep gating due to three desirable properties, see figure 3. i. Being a relaxed
version of the step function makes it differentiable. ii. Retaining the sigmoid
value above the threshold means that the classifier gets the chance to know, out of the
selected timesteps, which is relatively more important than the other. iii. Conversely to
ReLU, the activation clipped-sigmoid is upper-bounded by one, thus preventing a
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single timestep feature xi from dominating the others by being multiplied by unbounded
gating value α̂i.
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Figure 40: In training, we use gated-sigmoid to activate the gating value αi and to
select the timesteps. gated-sigmoid has some desirable properties. i. Unlike ReLU,
having upper bound does not allow a timestep feature to dominate others. ii. Different
from sigmoid, being clipped allows the network to discard insignificant timesteps, i.e.
those with gating values αi < 0.5. In test, we replace the gated-sigmoid with step
function for binary gating of timesteps.

Context-Conditional Gating. Up till now, the selector learns to gate each timestep
regardless of its context, i.e. the other timesteps in the video. To achieve context-
conditional gating, where both the timestep and its context affect the gating decision, we
opt for a temporal modeling layer, self-attention [175], before the gating module, See
figure 39, bottom. This layer learns to correlate each timestep xi with all the others in the
video {x1, ..., xT } before gating.

Sparse Selection. The last component of the selector is to enforce sparsity on timestep
selection, i.e. choose as few timesteps as possible, yet retain the classification accuracy.
Simply put, the selector can cheat by predicting gating values just higher than the
threshold α > δ, δ = 0.5, resulting in all gates opened and all timesteps selected. The
selector has a natural tendency to such a behaviour, as the only loss used so far is
that of the classification. And the more timesteps used by the classifier, the better the
classification accuracy. To prevent such a behaviour, we apply L0 regularization [10,110]
to all the gating values {α̂i | i ∈ [1, ..., T ]} to enforce sparsity on the selected timesteps.
We note that the sparsity regularization is necessary for a properly functioning gating
mechanism.

Video Classifier. The assumption of TimeGate is that having efficiently selected the
most crucial timesteps from the video using the LightNet and the selector, one can opt
for a much more powerful HeavyNet to effectively classify the video. Thus, the second
stage of TimeGate is the video classifier, see figure 38, left. This classifier takes as input
only the subset T ′ of timesteps chosen by the selector, T ′ ⊂ T , T ′ � T . Each timestep
is represented as the feature of last convolutional layer of the HeavyNet. The video-level
features are denoted as Y = {yi | i ∈ [1, ..., T ′]}, Y ∈ RT ′×C′×H×W , where C′ is the
number of channels, T ′ is the number of selected timesteps, and H, W are the spatial
dimensions. After the last convolutional layer, the video level features Y are max-pooled
over the spatial dimension and fed-forwarded to a two-layer MLP for classification. We
follow [175] and max-pool the temporal dimension before the MLP logits.
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6.3.2 TimeGate Implementation

Backbone Choices. LightNet and HeavyNet are the backbone CNNs used by TimeGate.
Our choice for the LightNet is MobileNet-V3 [136]. As for the HeavyNet, we explore
three choices. A powerful 3D CNN I3D [15], an efficient 3D CNN ShuffleNet3D-V2 [95],
and a powerful 2D CNN ResNet2D-50 [62]. Before training TimeGate on a specific
dataset, the backbone CNNs are pre-trained on the dataset at hand. We use the same
training procedures specified by the authors of these CNNs.

Timestep Alignment. When the HeavyNet is a 3D CNN, the i-th timestep feature yi
is obtained from processing the i-th video segment si of M successive frames si =
{ f j, ...., f j+M}. For I3D, M = 8, and for ShuffleNet3D, M = 16. But since the LightNet
of the selector is a 2D CNN, how can we align the timestep of the selector, with that
of the classifier? Simply put, for the aforementioned HeavyNet feature yi, the aligned
LightNet feature xi has to be obtained from the middle frame of the video segment si.
More formally, the frame f j+dM/2e.

Model Training. TimeGate is trained with batch size 32 and for 100 epochs. We use
Adam with learning rate 1e-3 and epsilon 1e-4. We use PyTorch and TensorFlow for
our implementation. As for the number of concept kernels N, we found that N = 128
is a good choice for all the experiments, similar to [74]. As for the gating module, see
figure 39, during the training phase, we use gumbel noise and clipped-sigmoid to
get the activated gating value α̂i. In the test phase, we don’t use gumbel noise, and we
replace clipped-sigmoid with step-function, to get the binary gating value
α̂i = I(δ>0.5)(δ). That means alpha is binarized α̂i ∈ {0, 1} with thresholding δ = 0.5.

6.4 E X P E R I M E N T S

6.4.1 Datasets

Charades is a widely used benchmark for human action recognition. It is a diverse
dataset with 157 action classes in total. The task is mult-label recognition, where each
video is assigned to one or more action class. It is divided into 8k, 1.2k and 2k videos
for training, validation and test splits, respectively, covering 67 hours. On average, each
video spans 30 seconds, and is labeled with 6 and 9 actions for training and test splits,
respectively. Thus, Charades meets the criteria of long-range activities. We use Mean
Average Precision (mAP) for evaluation.

Breakfast is a benchmark for long-range activities, depicting cooking activities. Overall,
it contains 1712 videos, divided into 1357 and 335 for training and testing, respectively.
The task is video recognition into 10 classes of making different breakfasts. Added to
the video-level annotation, we are given temporal annotations of 48 unit-actions. In our
experiments, we only use the video-level annotation, and we do not use the temporal
annotation of the unit-actions. The videos are long-range, with the average length of
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Figure 41: Our stand-alone timestep selector helps improving the performance and
reduces the computation of off-the-shelf CNN classifiers – be it 2D/3D heavyweight CNN
or even lightweight 3D CNN. More over, if TimeGate is trained end-to-end, the selector
learns a better gating to the benefit of the classifier. So, the performance is improved
even further.

2.3 minutes per video. Which makes it ideal for testing the efficiency of recognizing
long-range activities. The evaluation method is the classification accuracy.

MultiThumos is a benchmark for long-range videos, depicting sports activities. It
consists of 413 videos, divided into 200 and 213 for training and testing, respectively.
Each video has multi-labels, where the total number of action classes across the dataset is
65. The average length is 3.5 minutes per video. The original task of this dataset [189] is
the temporal segmentation of these short-range actions. Recently, it is repurposed by [73]
into multi-label classification of long-range videos. We adopt the same experimental
setup of [73]. That is to say, each long-range video is classified into multi-labels, and the
mAP is used for evaluation.

Ablation Studies. We use Breakfast as the primary dateset for the ablation experiments
and studies. These experiments highlight our contributions, as follows. i. In § 6.4.3,
we discuss to what extend the end-to-end training of TimeGate helps. ii. In § 6.4.4, we
show how context-conditional gating is more important than frame-conditional. iii. In
§ 6.4.2, 6.4.5, we demonstrate the improvements of TimeGate over the current CNN
classifiers, in terms of accuracy and efficiency.

6.4.2 Stand-alone Timestep Selector

One might raise an important question – will a timestep selector based on LightNet
features X benefit a classifier based on HeavyNet features Y , given the differences
between the feature spaces of LightNet and HeavyNet C , C′? To answer this question,
we construct an experiment of two steps on Breakfast. The first step is training a stand-
alone selector, where we choose MobileNet for both LightNet and HeavyNet. During
training, we randomly sample T = 32 timesteps from each video. Since MobileNet
is a 2D CNN, a timestep here is practically a video frame. With the help of the L0
regularization, the selector achieves sparse selection of timesteps, by as little as T ′ = 16
without degrading the classification performance. The second step is testing how will the
selector benefit off-the-shelf CNN classifiers: I3D, ShuffleNet3D and ResNet2D. Then,
we measure their performance using different time scales. More formally, from each
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Baseline
Accuracy (%) @ Timesteps

4 8 16 32 64 128 256

R2D 61.0 67.1 67.3 71.0 72.9 74.3 73.8
R2D+TG 63.9 68.2 70.2 73.3 74.3 76.4 74.3

S3D 46.3 60.8 63.4 67.2 67.3 65.8 66.3
S3D+TG 54.4 65.1 66.2 69.8 69.7 66.7 67.8

I3D 66.8 74.3 82.8 84.7 85.7 86.5 85.4
I3D+SCS [96] 61.4 74.7 81.8 84.4 84.4 85.4 84.6
I3D+TG 69.5 77.9 85.2 85.9 86.7 88.1 86.5

Table 21: The stand-alone selector of our model TimeGate (TG) benefits off-the-shelf
CNN classifiers. The benefit is consistent for various classifiers: I3D, ShuffleNet3D
(S3D), and ResNet2D (R2D).

test video, we sample T ′ timesteps , T ′ ∈ {1, 2, 4, 8, 16}, and we use different sampling
methods: random, uniform, and timestep selector. During testing, the output of the
timestep selector is a per-timestep binary value α̂i ∈ {0, 1} of whether to consider or
discard the i-th timestep. So, if T timesteps are processed by the selector, it is able to
choose a subset T ′ timesteps and discard the others, where T ′ ⊂ T , T ′ � T . And to
evaluate the benefit of the selector, the off-the-self classifier then uses only T ′.

As reported in table 21, and shown in figure 41, we observe that the stand-alone
selector improves the accuracy of off-the-shelf classifiers. The reason is that the selector,
based on LightNet, is able to select the most relevant timesteps from the video. Also, we
notice that the improvements are consistent for three different classifiers: I3D, ResNet2D
and ShuffleNet3D.

6.4.3 End-to-End TimeGate

Having experimented with the stand-alone selector, we pose another question. Is it
possible to train TimeGate end-to-end, given that the selector and the classifier are based
on two different CNNs, with two different feature spaces, C , C′?. Our experiments
show that indeed, in end-to-end training, the gating module learns a better selection
to the benefit of the classifier. The outcome is improvement in performance over the
stand-alone selection, as reported in table 22. We conclude that in end-to-end, the gating
module learns to determine the importance of the i-th heavyweight feature yi based on
the corresponding lightweight feature xi.

In addition, figure 42 shows the average ratio of selected timesteps for each activity
class of Breakfast dataset. The ratios of the stand-alone (red) is changed when it is trained
end-to-end with different HeavyNet: ResNet2D, (blue), I3D (yellow), and ShuffleNet3D
(blue). We observe that these ratios have similar trends when the HeavyNet is 3D CNN,
regardless of which 3D CNN is used. Between yellow and blue, there is a similar trend in
8 out of 10 activities. However, these ratios tend to vary between 2D and 3D as HeavyNet
– only 3 out of 10 actions tend to have similar trends, see green and yellow. From this
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Baseline
Accuracy (%) @ Timesteps

4 8 16 32 64 128 256

SCSampler [96] 61.4 74.7 81.8 84.4 84.4 85.4 84.6
TimeGate SA 69.5 77.9 85.2 85.9 86.7 88.1 86.5
TimeGate ETE 74.4 78.1 82.9 86.7 87.4 89.3 86.1

Table 22: Our stand-alone (SA) selector benefits off-the-shelf CNN classifiers. End-to-
end (ETE) training is even better.

Baseline
Accuracy (%) @ Timesteps

4 8 16 32 64 128 256

SCSampler [96] 61.4 74.7 81.8 84.4 84.4 85.4 84.6
TG Frame 69.2 73.8 80.7 81.5 83.9 83.1 83.6
TG Context 69.5 77.9 85.2 85.9 86.7 88.1 86.5

Table 23: TimeGate (TG) is better when the gating module is conditioned on both the
frame-level and the context-level. More over, TimeGate outperforms SCSampler in
long-range activities.

experiment, we conclude that the gating module, depending on LightNet features, learns
to select better timesteps to the benefit of the HeavyNet classifier.
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Figure 42: The ratios of selected timesteps for the activity classes of Breakfast. Note the
change in these ratios from stand-alone selector (red) to end-to-end training with the
HeavyNets: ResNet2D (green) I3D (yellow) and ShuffleNet3D (blue).

6.4.4 Context-Conditional Gating

When selecting the timesteps of long-range activities, TimeGate is conditioned on
both the segment and its context. This context-conditioning is an important novelty of
TimeGate. Also, this property is desired for long-range activities, because the importance
of a certain segment is not always self-described, but rather depends on the context.
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To validate this assumption, we design the following experiment. We devise a baseline
model of our timestep selector, that does not have a temporal layer before the gating
module. Thus, in this baseline, the gating is frame-conditioned. Also, we include
SCSampler [96] in this comparison. We use I3D for the HeavyNet and we use MobileNet
as the backbone CNN for both our timestep selector and SCSampler. As reported in
table 23, we observe a drop in the performance when using the frame-conditioned
TimeGate. The reason is that, for long-range activities, its important for the selector to
pay attention to the context of the video segment before sampling it.
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Figure 43: In both the frame-conditioned TimeGate and SCSampler, the ratio of the
selected timesteps have small variance across the activity classes of Breakfast. In
contrast, in context-conditioned TimeGate, the ratio is highly dependent on the activity,
which means context-conditional gating is archived.

We report another analysis in figure 43. On the left, we show the ratio of selected
timesteps for each activity class of Breakfast. The frame-conditioned gating (dark blue)
tends to select similar ratios regardless of the category, so does the SCSampler (light blue).
In contrast, we see more diverse ratios for the context-conditioned gating. Figure 43, right,
shows the ratio variances. The much higher variance for context-conditional TimeGate
means that it is more dependent on the activity class than the case of SCSampler or
frame-conditional TimeGate.

6.4.5 Computation-Performance Tradeoff

When it comes to the recognition of long-range activities, the golden rule is the more
timesteps the better the accuracy, and the heavier the computation. But given the huge
redundancies of the visual evidences in these timesteps, there is a tradeoff between
accuracy and computation. In this experiment, we explore what is the effect of such a
tradeoff on TimeGate, and we compare against SCSampler. Figure 44 shows this tradeoff
using I3D as the video classifier. We notice that both TimeGate and SCSampler can
dramatically reduce the cost of I3D. However, TimeGate outperforms SCSampler.

In table 24, we report the exact computational budget of TimeGate v.s. SCSampler and
I3D. We notice that with, carefully selected 16 timesteps out of 128, TimeGate is able to
match the performance of off-the-shelf CNNs which use 64 uniformly sampled timesteps.
Also, we notice the computational cost of selecting these timesteps is marginal to the cost
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Timesteps FLOPS (G)
FLOPS ↓ Acc. (%) ↑

LightNet HeavyNet LightNet+Gating HeavyNet

R2D — 64 — 246.6 246.6 72.9
S3D+SCSampler [96] 128 16 7.5 61.7 69.2 68.6
R2D+TimeGate 128 16 7.8 61.7 69.5 70.2

S3D — 64 — 61.8 61.8 67.3
S3D+SCSampler [96] 128 16 7.5 17.3 24.8 64.1
S3D+TimeGate 128 16 7.8 17.3 25.1 66.2

I3D — 64 — 830.7 830.7 85.7
I3D+SCSampler [96] 128 16 7.5 207.8 215.3 81.8
I3D+TimeGate 128 16 7.8 207.8 215.6 85.2

Table 24: Breakdown of the computational cost of TimeGate v.s. SCSampler. Three
choices of HeavyNet: ResNet2D (R2D), ShuffleNet3D (S3D) and I3D. The computational
cost of LightNet and the gating module is marginal compared to that of the HeavyNet.
TimeGate reduces the cost by almost half. Our selector improves over SCSampler.
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Figure 44: TimeGate (TG) is better than SCSampler (SCS) in reducing computational
cost of I3D.

of the CNN classifier itself. For example, to select 8 out of 128 Timesteps, TimeGate
spends 7.5 G-FLOPS, while to classify only one timestep using I3D, 3.9 G-FLOPS are
needed.

Baseline
mAP (%) @ Timesteps

4 8 16 32 64 128 256

I3D 20.4 22.3 26.8 28.3 30.1 30.9 31.5
I3D + TimeGate 21.6 24.7 27.9 29.7 30.8 32.4 33.1

Table 25: TimeGate improves the performance of the backbone CNNs (i.e. I3D) on the
challenging task of multi-label classification of Charades.
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Figure 45: TimeGate improves the performance of the off-the-shelf I3D for recognizing
the actions of Charades.

6.4.6 Experiments on Charades

In this experiment, we test how TimeGate would fair against off-the-shelf CNN for
recognizing the multi-label action videos of Charades. This dataset is different from
Breakfast in two ways. First, the videos are mid-range with average length of 0.5 minutes,
compared to 2 minutes of Breakfast. Second, it is multi-label classification, but breakfast
is single-label classification. So, it is more challenging to select unrelated timesteps
from the videos of Charades than Breakfast. Most of the timesteps are already relevant
to recognizing the mid-range videos of Charades. Still, TimeGate outperforms I3D
at different time scales, see figure 45 and table 25. Worth mentioning that TimeGate
consistently improves the efficiency of HeavyNet CNNs other than I3D. For example,
if TimeGate uses 3D-ResNet-101 [175] as the HeavyNet, we achieve 36.2% using 256
timesteps compared to 35.5% achieved by [175] using dense sampling of 1024 timesteps.
In other words, TimeGate retains the performance of 3D-ResNet-101 using only 25% of
the computation. The reason is that, when TimeGate selects the most relevant segments
from each video, it improves the signal-to-noise ratio. In analogy, [96] concluded that
when the CNN video classifier considers the unrelated video segments, the accuracy
degrades.

6.4.7 Experiments on MultiThumos

Our final experiment is to use TimeGate in classifying the long-range activities of
MultiThumos. This dataset is particularly challenging, as each video is multi-labeled.
Nevertheless, we observe that TimeGate is able to retain the performance of the HeavyNet
(I3D) with much reduced computation, see table 26. In addition, it outperforms SC-
Sampler in reducing the computational cost. Worth mentioning that TimeGate achieves
75.11% mAP using 256 timesteps compared to 74.79% mAP achieved by [73] using
dense-sampling of 1024 timesteps. In other words, TimeGate retains the performance
of [73] with almost 25% of the computational cost.

6.4.8 Qualitative Results

Examples of Gated Timesteps. In figure 46, we show a few visual examples of the
timesteps selected, top, and discarded, bottom, by the gating module. We consider three

91



T I M E G AT E : C O N D I T I O NA L G AT I N G O F S E G M E N T S I N L O N G - R A N G E AC T I V I T I E S

Baseline
mAP (%) @ Timesteps

4 8 16 32 64 128 256

I3D 41.85 45.02 52.75 58.41 64.74 67.19 69.32
I3D + SCSampler 43.51 47.68 54.14 60.87 67.23 69.83 72.46
I3D + TimeGate 45.38 50.02 57.63 63.34 69.07 73.20 75.11

Table 26: TimeGate improves the performance of I3D when classifying the long-range
activities of MultiThmos. Also, it outperforms SCSampler.

Sandwich Pancake Coffee 

Figure 46: Top, frames corresponding to the selected timesteps by TimGate. Bottom,
are those discarded by TimeGate. The shown figures are for three activities: “making
sandwich”, “preparing coffee”, and “making pancake”. The general observation is that
TimeGate tends to discard the segments with little discriminative visual evidences.

cereals coffee fried egg juice milk

pancake salad sandwich scrambled tea

Figure 47: Distribution of the gating values across time for each activity of Breakfast.
In simple activities, such as “making coffee”, most of the selected segments happen in
the middle of the video. This means the middle of the video is much more relevant than
the other parts. While in complex activities, such as “making sandwich”, the selected
segments tend to distribute across the entire video. This means that almost the entire
video contains relevant and important segments.

activities: “making sandwich”, “preparing coffee”, and “making pancake”. The general
observation is that TimeGate tends to discard the segments with little discriminative
visual evidences.

Distribution of Gating Values. One might ask the question, how evenly distributed are
the timesteps selected by TimeGate? To answer this question, we uniformly sample
T = 128 timesteps from each test video. Then, we predict the gating value αi for each
timestep. After that, for all the videos of the same activity class, we average their gating
values. Next, we normalize these values between zero and one, and visualize them in
figure 47. Our observation is that, some activities are simple and usually happen in the
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middle of the video, such as “preparing tea”, or “making coffee”. Others are complex
and occupy the entire video, such as “fried egg” or “making sandwich”.

6.5 C O N C L U S I O N

In this work, we proposed TimeGate, a neural model for efficient recognition of long-
range activities in videos. Our approach for realizing the efficiency is sampling the
most relevant segments from the activity video. We highlighted the differences between
sampling for short-range actions v.s. long-range activities. We also stated the limitations
of existing works, such as SCSampler. TimeGate overcomes these limitations using
three contributions. First, a differentiable gating module for timestep selection. Second,
the selection that is conditioned on both the timestep and its context. Third, TimeGate,
an end-to-end neural model to retain the performance of existing CNN classifiers at
a fraction of the computational budget. We experimented on three benchmarks and
compared against related works. TimeGate consistently outperforms competing methods
on all three benchmarks and reduces the computation of I3D by 50% while maintaining
the classification accuracy. On MultiThumaos, TimeGate sets a new state-of-the-art mAP
of 75.11% compared to 74.79% mAP of Timeception [73] while consuming only 25% of
the computation cost. Our empirical evaluations and results demonstrate the efficiency
of TimeGate in recognizing long-range activities.
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C O N C L U S I O N S

7.1 S U M M A RY

This thesis contributes to the literature of understanding and recognizing human activities
in videos. More specifically, the thesis draw line between short-range atomic actions
and long-range complex activities. For the classification of the latter, the mainstream
approach in literature is to divide the activity into a handful of short segments, called
atomic actions. Then, a neural model, such as 3D CNN, is trained to represent and
classify each segment independently. Then, the activity-level classification probability
scores are obtained by pooling over that of the segments. Differently, this work argues
that long-range activities are better classified in full. That is to say, the neural model
has to reason about the long-range activity, all at once, to better recognize it. Based
on this argument, the thesis proposes different methods and neural network models for
recognizing these complex activities.

In chapter 2, the task of zero-shot multimedia event detection (MED) is addressed.
In this task, a repository of unlabeled videos is given. In addition, a set of text queries
are given. Each query consists of a paragraph, or two, describing in details a certain
human event. Examples of these events are “birthday party”, “wedding event” or “dog
show”. The description includes possible subjects and objects expected to perform in
the event. Also, it includes venues where the event can likely take place. The task
is to retrieve, i.e. rank, the videos according to their semantic similarity to each text
query. Furthermore, this task is zero-shot learning – neither the queries nor the videos
are known in training time. This thesis proposes to learn a cross-modal manifold, i.e.
feature space, using external sources of knowledge, on the hope that this space makes
it possible to correctly retrieve the videos in test time. We notice that for EventNet, an
existing dataset for event videos, the categories are originally crawled from WikiHow, a
website with articles discussing many events in daily life. So, we draw the link between
the videos of EventNet and the text articles of WikiHow. Then, we learn cross-modal
neural embeddings between the visual and the textual modality, such that for a certain
event, the article and its correlated videos fall closer on the manifold. Previous methods
opt for an off-the-shelf distance metric, such as Euclidean or cosine, to learn such
manifold. Differently, we find that learning the distance metric itself, along with the
neural embeddings of the visual and textual modalities, in an end-to-end fashion, is the
optimal solution. Experiments are conducted on two benchmarks MED-13 and MED-
14. In addition, analysis and comparisons are made, where our method comfortably
outperforms previous methods.
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Chapter 3 addresses the difference between short-range atomic actions, and long-range
human activities. In addition, three important properties of the latter are outlined. These
properties are temporal composition, temporal order and temporal extent. Take for
example the complex activity of “cooking meal”. Composition means that it can be
broken down into building blocks, called one-actions, e.g. “stir”, “wash”, “slice”. None
of which has an end goal by itself. But all together make the complex activity more
meaningful. Order means that these one-actions exhibit temporal order, albeit week.
Usually, one wash the hands before start cooking. And the temporal extent means that the
temporal duration of the same one-action may vary from one video exemplar to another.
One person might take a little bit longer to wash hands than another person. Existing
methods fall short of addressing these three properties, combined. So, Timeception, a
novel neural network layer for temporal modeling, is proposed. Timeception uses multi-
scale kernels to tolerate the temporal extents of one-actions. Multi-scale is achieved by
either using different kernel sizes, or different dilation rates. Additionally, Timeception
decomposes the kernel of typical 3D convolution into a newly proposed temporal-only
kernels. Since the temporal aspect of the human activity is, arguably, the most important
among all other aspects, these temporal-only kernels are dedicated to model only the
temporal dimension. As such, the effect of temporal-only convolutions is a drastic
reduction in the computational cost of 3D convolutions. This enables Timeception to
live up to the computational demands of seconds-long videos. Besides, Timeception is
a modern and modular layer for temporal modeling. It can be stacked on top of 2D or
3D CNNs alike. By conducting several experiments, the benefits of Timeception are
demonstrated, and the technical novelties are verified. Besides, Timeception outperforms
state-of-art methods on three benchmarks Charades, Breakfast and MultiThumos.

While the proposed model Timeception of 3 can scale up to a minute-long human
activities in videos, how about even longer activities. Chapter 4 is concerned with
this problem – that is how to represent half-an-hour video and recognize it. Related
works opt for statistical pooling, which neglects the temporal structure. Others opt for
convolutional methods, as CNN and Non-Local. While successful in learning temporal
concepts, they fall short of modeling minutes-long temporal dependencies. In this chapter,
we propose VideoGraph, a method to achieve the best of two worlds: represent minutes-
long human activities and learn their underlying temporal structure. To represent human
activities, VideoGraph learns a soft version of an undirected graph. The graph nodes are
deterministic and are learned entirely from video datasets, making VideoGraph applicable
to video understanding tasks without node-level annotation. While the graph edges are
probabilistic and are learned in a soft-assignment manner. The result is improvements
over related works on benchmarks: Breakfast, Epic-Kitchens and Charades. Besides, we
demonstrate that VideoGraph is able to learn the temporal structure of human activities
in minutes-long videos.

In chapter 5, the focus is shifted to a fundamental property of long-range activities in
videos. This property is the perturbations over time in short-range visual evidences, i.e.
one-actions. In other words, a main conclusion of chapters 3 and 4 is that the long-range
activity exhibits a weak temporal order of its building blocks, the one-actions. For
example, a person might start the long-range activity of “make coffee” by “add milk”
then “add coffee” and end up with “pour sugar”. Anther person might start first with
“add milk”, then “add coffee” and skip “pour sugar” all together. These perturbations
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over time requires some tolerance, or invariance, form the methods that learn to represent
and classify long-range activities. As such, a new temporal modeling layer is devised,
namely Permutation Invariant Convolution, PIC. Not only this layer, PIC, introduces
the invariance to temporal perturbations, but also addresses the shortcomings of some
of the existing temporal modeling methods. From the recent literature, three dominant
approaches for recognizing the long-range activities are outlined. These approaches
are vector aggregation, self-attention, and convolution. Their upsides and downsides
are summarized. The proposed layer, PIC, maintains the upsides and addresses some
of the downsides. Strictly speaking, it is found that both vector aggregation and self-
attention disregard local connectivity – a fundamental design principle in recognizing
temporal patterns. Variously, PIC respects local connectivity, thus is able to capture
complex temporal patters at multiple layers of abstractions. In addition, self-attention
depend on memory-like kernels to detect latent visual concepts. However, the kernels are
conditioned on the input signal, i.e. the activity videos. Thus, these kernels are prune to
failure in the case of noisy input signals. In contrast, the kernels in PIC layer are shared
and not inferred. That is to say the kernels are freely learned from the training set, rather
than being inferred from the input signal. As such, PIC is better suited for detecting
the most discriminant visual evidences from the noisy videos of long-range activities.
In summary, PIC incorporates three design principles i. invariance to permutation, ii.
using shared concept kernels, and iii. respecting local connectivity. These principles are
the reason why PIC is better in modeling the complexities of long-range activities than
the competing methods. After the experiments are carried out, it is concluded that PIC
outperforms other methods in recognizing the activities of three benchmark Breakfast,
MultiThumos, and Charades. Further more, by conducting quantitative and qualitative
analysis, the design principles of PIC are thoroughly investigated, and their importance
is confirmed.

Chapter 6 sheds light on the task of understanding human activities in videos from a
perspective different from the previous chapters. Rather than recognizing such activities,
this chapter discusses the efficiency of already existing neural models in activity recogni-
tion. Generally, the model efficiency is materialized by four metrics, namely i. number
of learning parameters in millions, ii. number of floating point operations (FLOPs),
iii. feedforward time in milli-seconds, and iv. classification accuracy in percentage.
This chapter, however, focuses on the trade-off between only two metrics, which are
the FLOPs and the accuracy. In addition, TimeGate, a new method for the efficient
recognition of long-range activities in videos, is proposed. Using TimeGate, realizing the
efficiency is achieved by sampling the most representative segments from the activity’s
video. Then, only the sampled segments are considered for recognition, while all the
other segments are discarded. Consequently, the recognition accuracy is retained at a
fraction of the computational cost. TimeGate has two technical contributions. First,
thanks to a carefully crafted gating mechanism, TimeGate is fully differntiable. Thus, it
can be trained with existing video classifiers, such as 3D CNNs, in an end-to-end fashion.
This is in contrast to SCSampler – a non-differentiable method for sampling salient
segments. Second, the gating mechanism in TimeGate is context-conditional, which is
considerably better for long-range activities. This is in contrast to the frame-conditional
gating used by other methods, such as SCSampler. Context-conditioning means that
when sampling a certain segment from a video, the visual evidences in both the segment
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and its context, i.e. the video, are considered. While segment-conditioning means that the
visual evidences of only the segment is used. In the end, in-depth analysis is conducted,
and the benefits of TimeGate are verified. Besides, using qualitative and quantitative are
experiments on three datasets, TimeGate outperforms related methods in reducing the
computational cost of recognizing the long-range activities.

7.2 D I S C U S S I O N

Over the past years, a large body of literature is dedicated to addressing the problem of
video understanding. One perspective is to cast this problem as the downstream task of
single-label or multi-label classification of videos, whether the videos are short-range
atomic actions, or long-range complex activities. The outcome of this perspective is many
methods and neural network models that achieve a near-perfect classification accuracy,
and in some cases outperform human level. However, this thesis asks the following
questions. Do the video feature representations learned from the classification tasks
generalize well to other video-related tasks, such as object segmentation, object tracking,
or video generation? More importantly, if the answer is no, what novel tasks might be
better for understanding videos? And will these tasks inevitably require new datasets,
benchmarks, and evaluation methods?

So far in video understanding, the majority of literature aim for representing a video
using single feature vector. Each video, be it unit actions, or complex activities, entails a
wealth of information, spanning both the spatial and temporal dimensions. This raises the
question, can only one feature vector truly express all information given in a video? What
about the temporal structure the video entails? Also, what about the spatial relationships
between subject and object in the video? Maybe it is feasible to represent a short video
clip using a single feature vector. But when a video spans a few minutes or even an
hour, is only one vector still feasible? Wouldn’t this vector be an understatement? All
these questions argues for the need of structure-based representations to truly understand
videos.

In this thesis, chapter 3 casts light on the difference between short segments of videos,
called one-actions, and long-range videos, called complex activities. Nonetheless, the
problem is much more bigger than that. In videos, human motions can be explained at
different levels of granularity. In literature, there is lack of understanding these levels.
The quote said by Ernest Hemingway “Never Mistake Motion for Action” is a good
example for this lack of understanding. So, the thesis asks a few questions. What is
the difference between unit-action, one-action, micro-action, action, activity and event?
What are the properties of each? Consequently, to understand each of these levels, are
different methods required?

The quote “seeing is believing”, from the ancient Greek times, continues to hold true.
For example, it holds true when a person watches a movie, or an episode of TV series,
and tries to understand its content. But in computer vision, there are other sources, from
which, the computer machine can still understand videos. These sources are called the
video modalities. Audio, visual and textual modalities are good examples. So far, the
main bulk of literature addresses only the visual modality. Great efforts is exerted, and
the outcome of such efforts is many successful methods that successfully solve quite a
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few tasks in video understanding, such as detection, recognition, segmentation, tracking,
...etc. Neverthless, the thesis asks this question. Can the computer machine understand
videos from textual or audio modalities? Can literature devise methods to leverage such
modalities for a better understand of videos? Is there an optimal way to fuse all these
modalities to reach an even more better understanding?

Learning in computer vision, much like machine learning, is classically divided into
supervised, unsupervised and semi-supervised. In video understanding, a huge body
of literature is dedicated to proposing and discussing methods of supervised learning,
or even weakly supervised learning. However, these methods come at the great cost
of well-annotated, large-scale datasets. So far, a huge effort is made such that these
datasets remain updated, expanded and available to the many tasks of video understanding.
Though, with the rapid growth of data, problems, and tasks, the supervised learning might
be running out of time, and coming to an abrupt ending. So, the thesis asks the following
questions. Is supervised learning sustainable? If the answer is no, does the unsupervised
learning provide a solution? Or the question would rather be, is the unsupervised learning
realistic, to begin with? Or is there a compromise between the upsides and downsides
of supervised v.s. unsupervised learning? Finally, is self-supervised learning the way to
consider?
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A S P E C T E N VA N T I J D I N D E H E R K E N N I N G VA N M E N S E L I J K E AC T I V I T E I T E N

Dit proefschrift draagt bij aan het begrijpen en herkennen van menselijke activiteit in
video’s.

In hoofdstuk 2 wordt zero-shot multimedia event detectie (MED) besproken. Elke
zoekvraag bestaat uit een of twee alinea’s die in detail een menselijke gebeurtenis beschri-
jven. Voorbeelden van zulke gebeurtenissen zijn een verjaardagsfeest, een huwelijksfeest
of een honden show. Dit proefschrift stelt het leren van een afstandsmetriek voor met de
inbedding van visuele en tekstuele modaliteiten. Onze methode is beter dan de eerdere
methoden.

Hoofdstuk 3 behandelt het verschil tussen kortdurende, atomische acties en lang-
durende menselijke activiteiten in temporele compositie, temporele volgorde en tem-
porele omvang. Neem bijvoorbeeld de complexe activiteit “een maaltijd koken” opges-
plitst in roeren, wassen en snijden. Geen van deze heeft een doel op zich, maar alles bij
elkaar maakt het de complexe activiteit betekenisvoller. Bestaande methoden schieten te
kort bij het aanpakken van de drie eigenschappen. Dus wordt Timeception voorgesteld,
een nieuw neuraal netwerk. Omdat het temporele aspect van menselijke activiteit het
meest belangrijke is van alle aspecten, geven temporele convoluties een drastische ver-
laging van de rekenkosten en presteert de methode beter dan state-of-art methoden op
drie benchmarks.

Hoofdstuk 4 bediscussiëren we hoe een video van een half uur kan worden herkend.
Gerelateerd werk stelt statistisch samenvoegen voor. Dat laat de temporele structuur
weg. Anderen stellen convolutionele methoden voor, zoals convolutionele en niet-locale
neurale netwerken. Terwijl deze methoden succesvol zijn in het leren van temporele
concepten, schieten ze te kort in het modelleren van minuten-lange, temporele afhankeli-
jkheden. In dit hoofdstuk introduceren we VideoGraph, een methode die ontwikkeld is
om het beste van beide werelden te bewerkstelligen. Om menselijke activiteiten weer
te geven leert VideoGraph een zachte versie van een ongerichte graaf. De knopen van
de graaf zijn deterministisch en worden volledig geleerd uit video datasets. Dit maakt
VideoGraph toepasbaar op video taken zonder annotaties per knoop. Het resultaat is een
verbetering vergeleken met gerelateerd werk op drie benchmarks.

In hoofdstuk5 wordt de focus verlegd naar een fundamentele eigenschap van lang-
durende activiteiten in video’s. Een persoon kan bijvoorbeeld een langdurende activiteit
“koffie zetten” beginnen door “melk toevoegen”, vervolgens “koffie toevoegen” en te
eindigen met “suiker gieten”. Een andere persoon kan beginnen met “melk toevoegen”,
vervolgens “koffie toevoegen” om daarna “suiker gieten” helemaal over te slaan. Deze
verstoringen over tijd vereisen enige tolerantie of invariantie van methoden die deze
langdurende activiteiten representeren en classificeren. PIC is beter geschikt voor het
detecteren van de meest onderscheidende visuele kenmerken voor de rommelige video’s
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van langdurende activiteiten: i. invariant onder permutatie, ii. gebruikmaken van concep-
tkernen en iii. het respecteren van lokale connectiviteit. PIC doet het beter dan andere
methoden in het herkennen van activiteiten van drie benchmarks.

Hoofdstuk 6 belicht de taak om menselijke activiteiten in video’s te begrijpen va-
nuit een ander perspectief dan de voorgaande hoofdstukken. TimeGate, een nieuwe
methode voor het efficiënte herkennen van langdurende activiteiten in video’s, re-
aliseert de meest representatieve segmenten van de video. Als gevolg wordt de herken-
ningsnauwkeurigheid behouden met een fractie van de rekenkosten. In kwalitatieve
en kwantitatieve experimenten op drie datasets uit te voeren, presteert TimeGate beter
dan bestaande methoden in het reduceren van rekenkosten voor het herkennen van
langdurende activiteiten.

102



AC K N OW L E D G M E N T S

I would like to give thanks to all the persons that have become part of this thesis.

First and foremost, I would like to express my sincere gratitude to my supervisors
Prof. Dr. Arnold Smeulders and Dr. Efstratios Gavves for the continuous support of my
Ph.D. research. I thank them for their patience, motivation, enthusiasm, and immense
knowledge. Their guidance helped me greatly in all the time of research and writing
this thesis. I cannot express enough how thankful I am for their continued guidance and
immense support throughout the years of my Ph.D. studies. The outcome of this Ph.D.
would not have been possible without their mentorship and supervision.

Second, I would like to thank the rest of the Ph.D. thesis committee: Prof. Dr. Mubarak
Shah, Prof. Dr. Max Welling, Dr. Pascal Mettes, and Dr. Amirhossein Habibian for their
encouragement, insightful comments, and valuable assessment.

Third, my sincere thanks go to Prof. Dr. Cees Snoek. I am grateful for his guid-
ance and mentorship. Thanks to his advice, I was able to make better choices in life.

Fourth, I would like to thank all the professors and staff members I worked with and
assisted in teaching: Prof. Dr. Arnoud Visser, Dr. Stevan Rudinac, Dr. Anthony van
Inge, and Prof. Dr. Theo Gevers.

Fifth, my thanks go to all my collaborators. I very much enjoyed working with you and I
learned a lot from you. Thank you Dr. Dennis Koelma, Dr. Babak Ehteshami bejnordi,
Dr. Mihir Jain, Dr. Hamid Reza Vaezi Joze, and Dr. Davide Abati.

Sixth, I feel grateful to who ever gave me a helping hand at the time of need. Thank you
Dr. Thomas Mensink and Dr. Sebastian Schelter. In addition, I would like to thank my
fellow labmates for their help with the translation: Sarah Ibrahimi and Riaan Zoetmulder.

Seventh, my thanks go to the management team: Mrs. Virginie Mes, Mrs. Félice
Arends, Mrs. Nicole Vastenhout, and Mr. Erik Hitipeuw. Only because of your help and
support I was able to finish this Ph.D. in time.

Eighth, I would like to thank my students: Joop Pascha, Juan Buhagiar, Tony N. Guyen,
and Joris Baan. Not only I enjoyed supervising your thesis projects, but also I learned
from you. Also, thanks to all of my students in M.Sc. and B.Sc. cohorts of Computer
Science and Artificial Intelligence.

Last but not the least, I thank all my colleagues for the wonderful years I spent working
with you. Special thanks go to my fellow labmates at the Quva Lab: Mert Kilickaya,

103



Acknowledgments

Changyong Oh, Adeel Pervez, Dr. Peter O’Connor, Hendrik Heuer, Shaui Liao, Berkay
Kicanaoglu, Kirill Gavrilyuk, Tom Runia, Matthias Reisser, Maurice Weiler, Dr. Ran
Tao, Dr. Zhengyang Li, Dr. Amir Ghodrati, Dr. Deepak Gupta, and Dr. Andrew Brown.
Besides, I would like to thank all my fellow researchers at the ISIS Lab, in no particular
order: William Thong, Dr. Masoud Mazloom, Dr. Nanne van Noord, Fida Thoker,
Gjorgji Strezoski, Riaan Zoetmulder, Sarah Ibrahimi, David Zhang, Sadaf Gulshad, Shuo
Chen, Yunlu Chen, Devanshu Arya, Mehmet Altinkaya, Ivan Sosnovik, Artem Moskalev,
Jiaojiao Zhao, Dr. Spencer Cappallo, Dr. Jörn Jacobsen, and Dr. Kandan Ramakrishnan.

104



B I B L I O G R A P H Y

[1] Wikihow, 2016. http://wikihow.com.

[2] Wikipedia, 2016. http://wikipedia.com.

[3] Charades algorithms. github.com/gsig/charades-algorithms, 2017.

[4] Implementation of timeception. github.com/noureldien/timeception, 2017.

[5] M. Abadi et al. Tensorflow. tensorflow.org, 2015.

[6] S. Abu-El-Haija, N. Kothari, J. Lee, P. Natsev, G. Toderici, B. Varadarajan, and S. Vijayanarasimhan.
Youtube-8m: A large-scale video classification benchmark. In arXiv, 2016.

[7] A. Agharwal, R. Kovvuri, R. Nevatia, and C. G. Snoek. Tag-based video retrieval by embedding
semantic content in a continuous word space. In IEEE WACV, 2016.

[8] R. Arandjelovic and A. Zisserman. All about vlad. In IEEE CVPR, 2013.

[9] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust features. In ECCV, 2006.

[10] B. E. Bejnordi, T. Blankevoort, and M. Welling. Batch-shaping for learning conditional channel
gated networks. In ICLR, 2020.

[11] S. Bhardwaj, M. Srinivasan, and M. M. Khapra. Efficient video classification using fewer frames.
In CVPR, 2019.

[12] H. Bilen, B. Fernando, E. Gavves, and A. Vedaldi. Action recognition with dynamic image networks.
In TPAMI, 2017.

[13] H. Bilen, B. Fernando, E. Gavves, A. Vedaldi, and S. Gould. Dynamic image networks for action
recognition. In CVPR, 2016.

[14] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. In JMLR, 2003.

[15] J. Carreira and A. Zisserman. Quo vadis, action recognition? a new model and the kinetics dataset.
In CVPR, 2017.

[16] X. Chang, Y. Yang, A. G. Hauptmann, E. P. Xing, and Y.-L. Yu. Semantic concept discovery for
large-scale zero-shot event detection. In IJCAI, 2015.

[17] X. Chang, Y. Yang, G. Long, C. Zhang, and A. G. Hauptmann. Dynamic concept composition for
zero-example event detection. In arXiv, 2016.

[18] X. Chang, Y.-L. Yu, Y. Yang, and E. P. Xing. They are not equally reliable: Semantic event search
using differentiated concept classifiers. In IEEE CVPR, 2016.

[19] Y. Chen, M. Rohrbach, Z. Yan, S. Yan, J. Feng, and Y. Kalantidis. Graph-based global reasoning
network. In arXiv, 2018.

[20] Z. Chen, Y. Li, S. Bengio, and S. Si. You look twice: Gaternet for dynamic filter selection in cnns.
In CVPR, 2019.

[21] F. Chollet. Xception: Deep learning with depthwise separable convolutions. In CVPR, 2017.

[22] F. Chollet et al. Keras. keras.io, 2015.

[23] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric discriminatively, with application
to face verification. In IEEE CVPR, 2005.

[24] I. Cosmin Duta, B. Ionescu, K. Aizawa, and N. Sebe. Spatio-temporal vector of locally max pooled
features for action recognition in videos. In PCVPR, 2017.

[25] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005.

105

http://wikihow.com
http://wikipedia.com
github.com/gsig/charades-algorithms
github.com/noureldien/timeception
tensorflow.org
keras.io


Bibliography

[26] D. Damen, H. Doughty, G. Maria Farinella, S. Fidler, A. Furnari, E. Kazakos, D. Moltisanti,
J. Munro, T. Perrett, W. Price, et al. Scaling egocentric vision: The epic-kitchens dataset. In ECCV,
2018.

[27] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman. Indexing by latent
semantic analysis. In JACS, 1990.

[28] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neural networks on graphs with
fast localized spectral filtering. In NIPS, 2016.

[29] J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan, K. Saenko, and
T. Darrell. Long-term recurrent convolutional networks for visual recognition and description. In
CVPR, 2015.

[30] Y. Du, C. Yuan, B. Li, L. Zhao, Y. Li, and W. Hu. Interaction-aware spatio-temporal pyramid
attention networks for action classification. In ECCV, 2018.

[31] I. C. Duta, B. Ionescu, K. Aizawa, and N. Sebe. Spatio-temporal vlad encoding for human action
recognition in videos. In ICMM, 2017.

[32] M. Elhoseiny, J. Liu, H. Cheng, H. Sawhney, and A. Elgammal. Zero-shot event detection by
multimodal distributional semantic embedding of videos. In AAAI, 2016.

[33] C. Feichtenhofer, H. Fan, J. Malik, and K. He. Slowfast networks for video recognition. In ICCV,
2019.

[34] C. Feichtenhofer, A. Pinz, R. P. Wildes, and A. Zisserman. What have we learned from deep
representations for action recognition? In CVPR, 2018.

[35] C. Feichtenhofer, A. Pinz, and A. Zisserman. Convolutional two-stream network fusion for video
action recognition. In CVPR, 2016.

[36] B. Fernando, E. Gavves, J. Oramas, A. Ghodrati, and T. Tuytelaars. Rank pooling for action
recognition. In IEEE TPAMI, 2016.

[37] B. Fernando, E. Gavves, J. Oramas, A. Ghodrati, and T. Tuytelaars. Rank pooling for action
recognition. In TPAMI, 2017.

[38] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. In ICML, 2017.

[39] D. Fleet and Y. Weiss. Optical flow estimation. In Handbook of mathematical models in computer
vision, 2006.

[40] K. Fukushima. Cognitron: A self-organizing multilayered neural network. In Biological cybernetics,
1975.

[41] K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of pattern
recognition unaffected by shift in position. In Biological cybernetics, 1980.

[42] A. Gaidon, Z. Harchaoui, and C. Schmid. Actom sequence models for efficient action detection. In
CVPR, 2011.

[43] C. Gan, T. Yao, K. Yang, Y. Yang, and T. Mei. You lead, we exceed: Labor-free video concept
learning by jointly exploiting web videos and images. In IEEE CVPR, 2016.

[44] E. Gavves, T. E. J. Mensink, T. Tommasi, C. G. M. Snoek, and T. Tuytelaars. Active transfer
learning with zero-shot priors: Reusing past datasets for future tasks. In IEEE ICCV, 2015.

[45] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin. Convolutional sequence to sequence
learning. In ICML, 2017.

[46] A. Ghodrati, E. Gavves, and C. G. Snoek. Video time: Properties, encoders and evaluation. In
BMVC, 2018.

[47] R. Girdhar, J. Carreira, C. Doersch, and A. Zisserman. Video action transformer network. In arXiv,
2018.

106



Bibliography

[48] R. Girdhar, J. Carreira, C. Doersch, and A. Zisserman. Video action transformer network. In CVPR,
2019.

[49] R. Girdhar and D. Ramanan. Attentional pooling for action recognition. In NIPS, 2017.

[50] R. Girdhar, D. Ramanan, A. Gupta, J. Sivic, and B. Russell. Actionvlad: Learning spatio-temporal
aggregation for action classification. In CVPR, 2017.

[51] R. Goyal, S. E. Kahou, V. Michalski, J. Materzynska, S. Westphal, H. Kim, V. Haenel, I. Fruend,
P. Yianilos, M. Mueller-Freitag, et al. The” something something” video database for learning and
evaluating visual common sense. In ICCV, 2017.

[52] C. Gu, C. Sun, S. Vijayanarasimhan, C. Pantofaru, D. A. Ross, G. Toderici, Y. Li, S. Ricco,
R. Sukthankar, C. Schmid, et al. Ava: A video dataset of spatio-temporally localized atomic visual
actions. In arXiv, 2017.

[53] A. Habibian, T. Mensink, and C. G. Snoek. Composite concept discovery for zero-shot video event
detection. In ICMR, 2014.

[54] A. Habibian, T. Mensink, and C. G. Snoek. Videostory: A new multimedia embedding for few-
example recognition and translation of events. In ACM MM, 2014.

[55] A. Habibian, T. Mensink, and C. G. Snoek. Discovering semantic vocabularies for cross-media
retrieval. In ICMR, 2015.

[56] A. Habibian, T. Mensink, and C. G. Snoek. Videostory embeddings recognize events when examples
are scarce. In IEEE TPAMI, 2016.

[57] A. Habibian, T. Mensink, and C. G. Snoek. Video2vec embeddings recognize events when examples
are scarce. In TPAMI, 2017.

[58] A. A. Hagberg, D. A. Schult, and P. J. Swart. Exploring network structure, dynamics, and function
using networkx. In SciPy, 2008.

[59] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights and connections for efficient neural
network. In NeurIPS, 2015.

[60] K. Hara, H. Kataoka, and Y. Satoh. Can spatiotemporal 3d cnns retrace the history of 2d cnns and
imagenet? In CVPR, 2018.

[61] B. Hassibi, D. G. Stork, and G. J. Wolff. Optimal brain surgeon and general network pruning. In
ICNN, 1993.

[62] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016.

[63] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016.

[64] F. C. Heilbron, V. Escorcia, B. Ghanem, and J. C. Niebles. Activitynet: A large-scale video
benchmark for human activity understanding. In CVPR, 2015.

[65] B. K. Horn and B. G. Schunck. Determining optical flow. In TAIU, 1981.

[66] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R. Pang,
V. Vasudevan, et al. Searching for mobilenetv3. In CVPR, 2019.

[67] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and
H. Adam. Mobilenets: Efficient convolutional neural networks for mobile vision applications. In
arXiv, 2017.

[68] D.-A. Huang, S. Buch, L. Dery, A. Garg, L. Fei-Fei, and J. Carlos Niebles. Finding it: Weakly-
supervised reference-aware visual grounding in instructional videos. In CVPR, 2018.

[69] D.-A. Huang, S. Nair, D. Xu, Y. Zhu, A. Garg, L. Fei-Fei, S. Savarese, and J. C. Niebles. Neural
task graphs: Generalizing to unseen tasks from a single video demonstration. In arXiv, 2018.

[70] D.-A. Huang, V. Ramanathan, D. Mahajan, L. Torresani, M. Paluri, L. Fei-Fei, and J. C. Niebles.
What makes a video a video: Analyzing temporal information in video understanding models and
datasets. In CVPR, 2018.

107



Bibliography

[71] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten. Densely connected convolutional
networks. In CVPR, 2017.

[72] N. Hussein, E. Gavves, and A. W. Smeulders. Unified embedding and metric learning for zero-
exemplar event detection. In CVPR, 2017.

[73] N. Hussein, E. Gavves, and A. W. Smeulders. Timeception for complex action recognition. In
CVPR, 2019.

[74] N. Hussein, E. Gavves, and A. W. Smeulders. Videograph: Recognizing minutes-long human
activities in videos. In ICCV Workhop, 2019.

[75] N. Hussein, E. Gavves, and A. W. Smeulders. Permutation invariant convolution for recognizing
long-range activities. In arXiv, 2020.

[76] N. Hussein, M. Jain, and B. E. Bejnordi. Timegate: Conditional gating of segments in long-range
activities. In arXiv, 2020.

[77] H. Idrees, A. R. Zamir, Y.-G. Jiang, A. Gorban, I. Laptev, R. Sukthankar, and M. Shah. The thumos
challenge on action recognition for videos “in the wild”. In CVIU, 2017.

[78] M. Jain, H. Jegou, and P. Bouthemy. Better exploiting motion for better action recognition. In
CVPR, 2013.

[79] E. Jang, S. Gu, and B. Poole. Categorical reparameterization with gumbel-softmax. In ICLR, 2017.

[80] S. Ji, W. Xu, M. Yang, and K. Yu. 3d convolutional neural networks for human action recognition.
In TPAMI, 2012.

[81] S. Ji, W. Xu, M. Yang, and K. Yu. 3d convolutional neural networks for human action recognition.
In TPAMI, 2013.

[82] L. Jiang, D. Meng, T. Mitamura, and A. G. Hauptmann. Easy samples first: Self-paced reranking
for zero-example multimedia search. In ACM MM, 2014.

[83] L. Jiang, T. Mitamura, S.-I. Yu, and A. G. Hauptmann. Zero-example event search using multimodal
pseudo relevance feedback. In ICMR, 2014.

[84] L. Jiang, S.-I. Yu, D. Meng, T. Mitamura, and A. G. Hauptmann. Bridging the ultimate semantic
gap: A semantic search engine for internet videos. In ICMR, 2015.

[85] L. Jiang, S.-I. Yu, D. Meng, Y. Yang, T. Mitamura, and A. G. Hauptmann. Fast and accurate
content-based semantic search in 100m internet videos. In ACM MM, 2015.

[86] Y.-G. Jiang, Z. Wu, J. Wang, X. Xue, and S.-F. Chang. Fcvid: Fudan-columbia video dataset. In
arXiv, 2015.

[87] Y.-G. Jiang, Z. Wu, J. Wang, X. Xue, and S.-F. Chang. Exploiting feature and class relationships in
video categorization with regularized deep neural networks. In IEEE TPAMI, 2017.

[88] Y.-G. Jiang, G. Ye, S.-F. Chang, D. Ellis, and A. C. Loui. Consumer video understanding: A
benchmark database and an evaluation of human and machine performance. In ICMR, 2011.

[89] L. Jing, B. Liu, J. Choi, A. Janin, J. Bernd, M. W. Mahoney, and G. Friedland. A discriminative
and compact audio representation for event detection. In ACM MM, 2016.

[90] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei. Large-scale video
classification with convolutional neural networks. In CVPR, 2014.

[91] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijayanarasimhan, F. Viola, T. Green,
T. Back, P. Natsev, et al. The kinetics human action video dataset. In arXiv, 2017.

[92] G. Kim and E. P. Xing. Reconstructing storyline graphs for image recommendation from web
community photos. In CVPR, 2014.

[93] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. In
ICLR, 2017.

108



Bibliography

[94] R. Kiros, Y. Zhu, R. R. Salakhutdinov, R. Zemel, R. Urtasun, A. Torralba, and S. Fidler. Skip-thought
vectors. In NIPS, 2015.
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