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PROBLEM

— Complex actions of Charades are
— 30 sec, compared to 5 sec of Kinetics.
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L e ] One-actions, comprising complex

/ \ DEPENDENCY

CJCOC ] -
\ ; Temporal dependenc_y, albeit weak,
between the one-actions.

Complex Action: Cooking a Meal
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(a) Model Overview (b) Timeception Layer (c) Temporal Conv Module
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TEMPORAL-ONLY CONV o BEEE). T
Depthwise separable 1D conv to reduce complexity Q 17O O
of 3D conv from O(t .c?) to O(t.c). 500 k,
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MULTI-SCALE KERNELS I 5

Different kernel sizes (k) or dilation rates (d) to
account for varieties in temporal extents of one-actions.
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EFFICIENT MODULAR LAYER i

Grouped conv and concat+shuffle to reduce ] ] ]
the computational cost of typical 3D conv.

Grouped Conv

Channel Shuffle

L I action, vary in their temporal extents.
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DATASET: CHARADES 103 -
Improve over I3D, R3D, NL and GCN v
with much less parameters. [
n
Temporal footprint is 10-fold longer g 102 -
than our non-local. =
Computational cost is much less
than related works.
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ResNet + Timeception 13D + Timeception

MULTI-SCALE KERNELS

Convolutions with multi-scale kernels
outperform their fixed-sized counterparts.

Performance of different dilation rates (d)
is comparable with that of different kernel
sizes (k).

fix door, close door -

wash table, put something on table —
open cabinet, take food, close cabinet -
tidy broom, tidy floor =

open box, close box -

open laptop, watch laptop -

turn on light, turn off light -
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LAYER EFFECTIVENES

Timeception monotonically improves as
the network goes deeper.

The same result is confirmed when using
different backbones, as ResNet and I3D.
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LONG-RANGE DEPENDENCY

For complex actions, Timeception does
better than related methods in modeling
the long-range temporal dependencies.

But for some short-range, simple actions,
it is outperformed.




