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Complex Action: Cooking a Meal 
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EXTENT 

DEPENDENCY 

Complex actions of Charades are 
30 sec, compared to 5 sec of Kinetics. 

One-actions, comprising complex 
action, vary in their temporal extents. 

Temporal dependency, albeit weak, 
between the one-actions. 

LONG-RANGE 

MULTI-SCALE KERNELS 

EFFICIENT MODULAR LAYER 

Depthwise separable 1D conv to reduce complexity 

of 3D conv from O(𝑡 . 𝑐2) to O(𝑡. 𝑐). 

Different kernel sizes (𝑘) or dilation rates (𝑑) to 
account for varieties in temporal extents of one-actions. 

Grouped conv and concat+shuffle to reduce  
the computational cost of typical 3D conv. 

TEMPORAL-ONLY CONV 

MULTI-SCALE KERNELS 

Convolutions with multi-scale kernels 
outperform their fixed-sized counterparts. 

Performance of different dilation rates 𝑑  
is comparable with that of different kernel 
sizes (𝑘).  

(b) Timeception Layer 
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Improve over I3D,  R3D, NL and GCN 
with much less parameters. 

DATASET: CHARADES 

Temporal footprint is 10-fold longer 
than our non-local. 

Computational cost is much less 
than related works. 
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31.8% LAYER EFFECTIVENES 

Timeception monotonically improves as 
the network goes deeper. 

The same result is confirmed when using 
different backbones, as ResNet and I3D. 

Multi Kernel Sizes (𝑘) 

Fixed Size 

33.8% 

31.8% 

Multi Dilation Rates (𝑑) 
33.9% 

LONG-RANGE DEPENDENCY 

For complex actions, Timeception does 
better than related methods in modeling 
the long-range temporal dependencies. 

But for some short-range, simple actions, 
it is outperformed. 
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