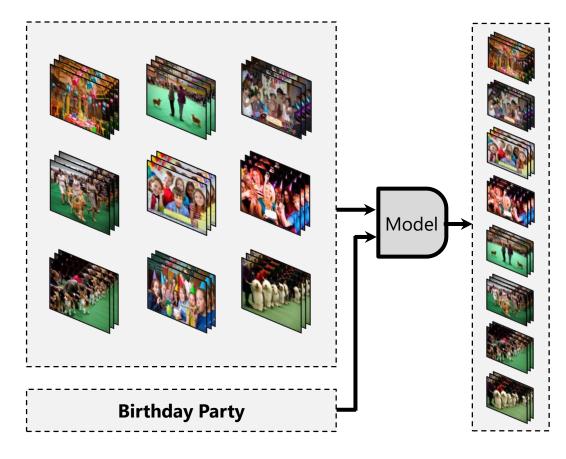


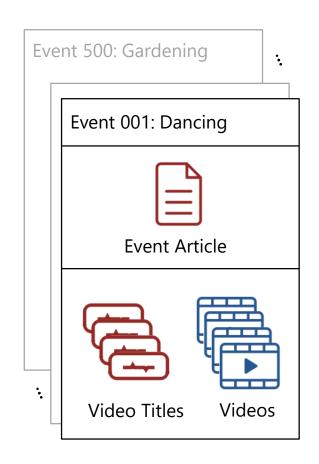
JNIVERSITY OF AMSTERDAM

Unified Embedding and Metric Learning for Zero-Exemplar Event Detection

Problem



Zero-exemplar Event Detection (ZED) is posed as a video retrieval task. Given test videos and a novel query, the model is required to rank the videos accordingly.

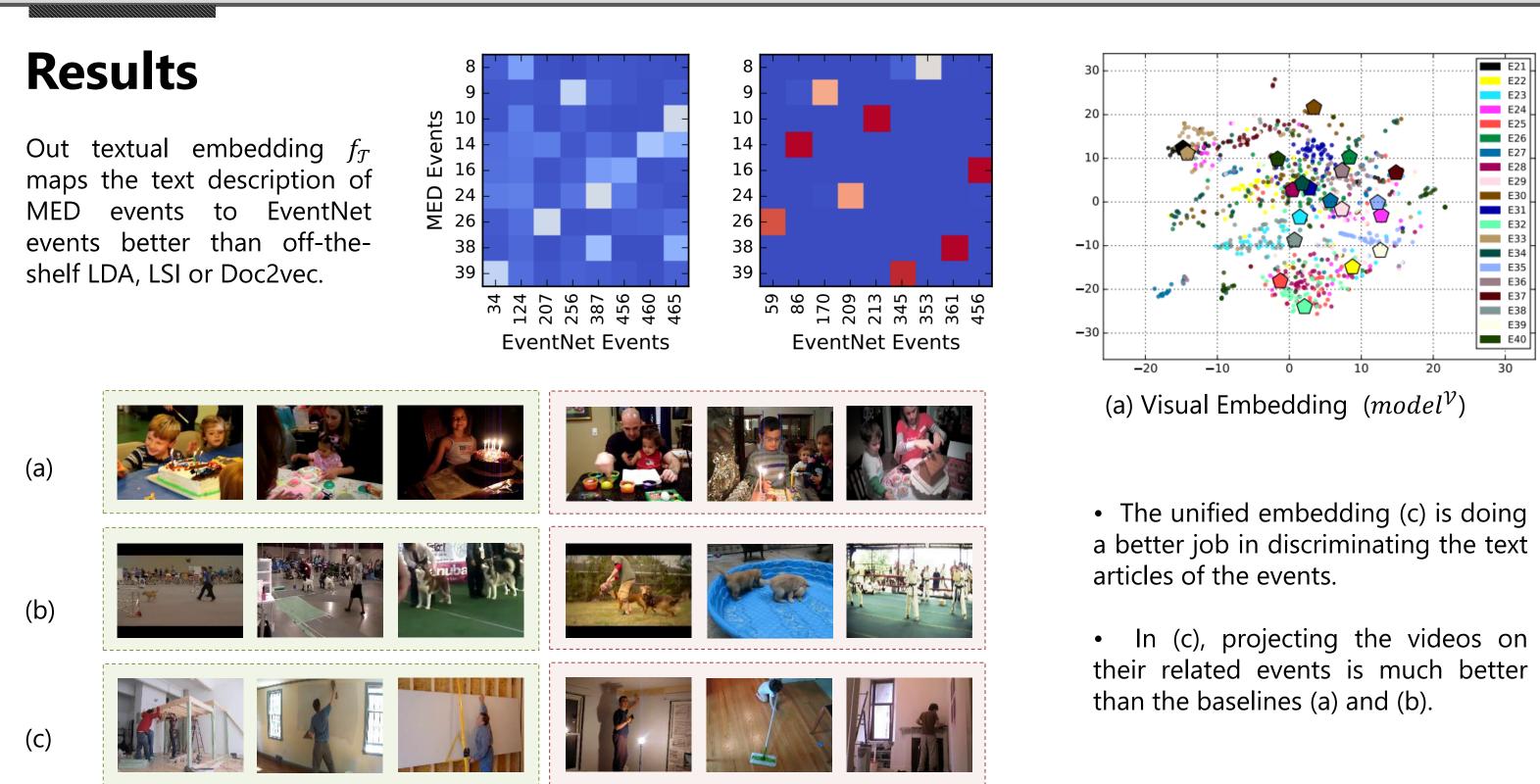


We use video samples EventNet and from articles from event WikiHow.

We pose ZED as learning from a set of predefined events. Given video exemplars of events "removing drywall" or "fit wall tiles", one may detect a novel event "renovate home" as a probability distribution over the predefined events.

Novelties

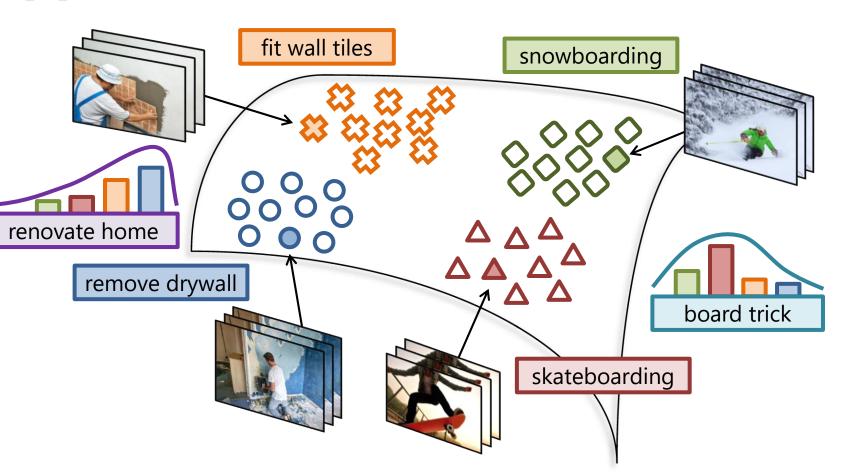
Unified embedding for cross-modalities with **metric loss** for maximum discrimination between events.

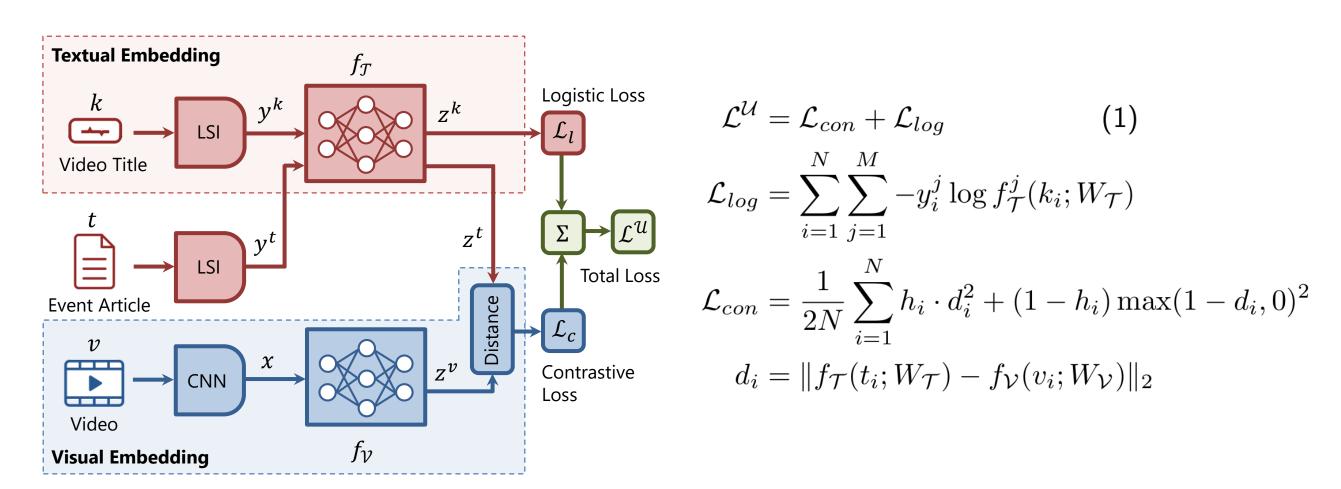


Success (left) and failure (right) video examples of three different events: (a) birthday party, (b) dog show, (c) renovating home.

Noureldien Hussein, Efstratios Gavves, Arnold W. M. Smeulders | Quva Lab, University of Amsterdam

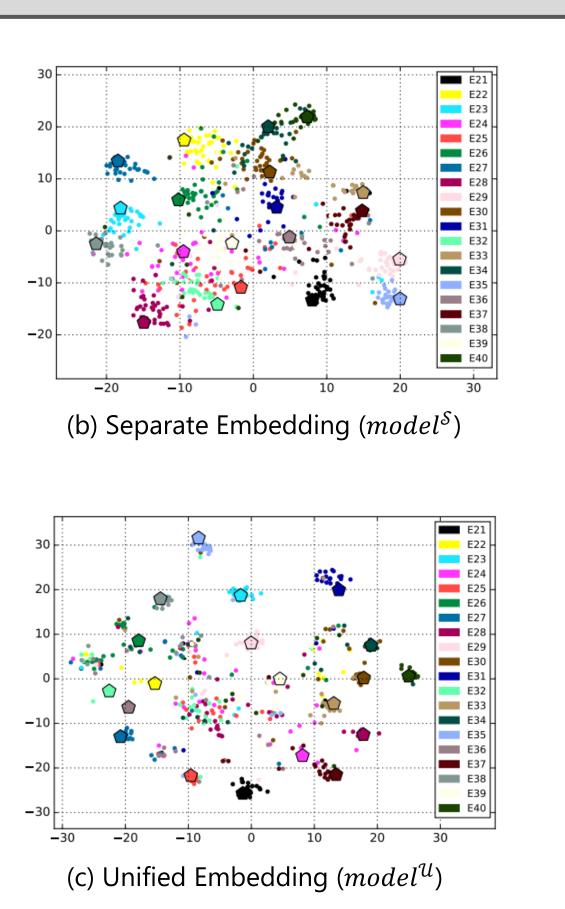
Approach

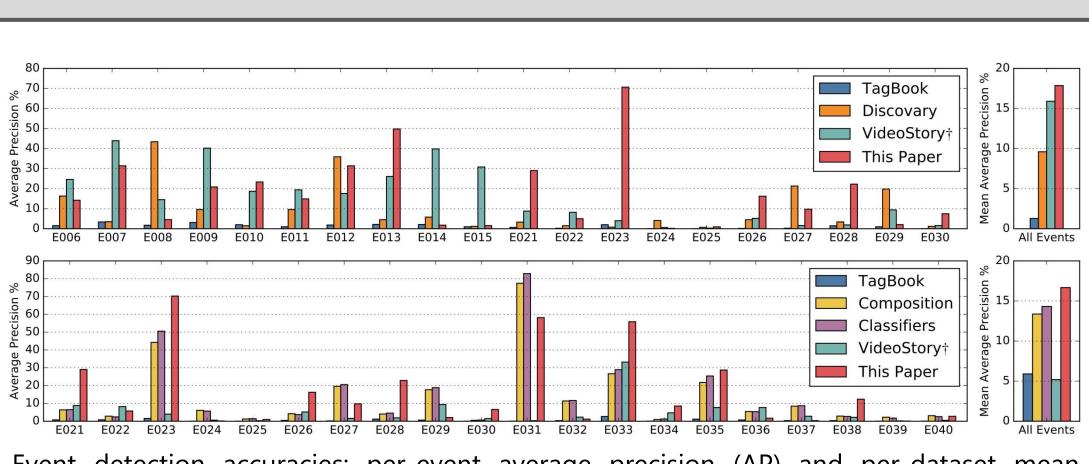




At the top, network $f_{\mathcal{T}}$ learns to classify the title feature y^k into one of M event categories. In the middle, we borrow the network f_T to embed the event articles feature y^t as $z^t \in \mathcal{Z}$. Then, at the bottom, the network $f_{\mathcal{V}}$ learns to embed the video feature x as $z^{\nu} \in \mathcal{Z}$ such that the distance between (z^{t}, z^{ν}) is minimized, in the learned metric space \mathcal{Z} .

Textual embedding poses a novel query a probability of predefined events.





Method		MED13	MED14	Baseline	Loss		Metric	$f_{\mathcal{V}}(\cdot)$	$f_{\mathcal{T}}(\cdot)$	MED13	MED14
TagBook [18]	ToM '15	12.90	05.90	$model^\mathcal{V}$	$\mathcal{L}_{mse}^{\mathcal{V}}$	(2)	X	\checkmark	X	11.90	10.76
Discovary [7]	ICAI '15	09.60	_	$model^\mathcal{C}$	$\mathcal{L}_{con}^{\mathcal{C}}$	(3)	\checkmark	\checkmark	X	13.29	12.31
Composition [8]	AAAI '16	12.64	13.37	$model^\mathcal{S}$	\mathcal{L}_{log}	(4)	×	\checkmark	\checkmark	15.60	13.49
Classifiers [9]	CVPR '16	13.46	<u>14.32</u>	$model^\mathcal{N}$	$\mathcal{L}_{mse}^{\mathcal{N}}$	(5)	×	\checkmark	\checkmark	15.92	14.36
VideoStory† [17]	PAMI '16	15.90	05.20	$model^\mathcal{U}$	$\mathcal{L}^{\mathcal{U}}$	(1)	 ✓ 		\checkmark	17.86	16.67
VideoStory* [17]	PAMI '16	20.00	08.00			()					
This Work (model \mathcal{U}	() (17.86	16.67								
					_					_	

Left: retrieval accuracy (mAP) of our model vs. related works for MED-13 and MED-14 datasets. Right: retrieval accuracy (mAP) of our model (unified embedding) vs. other baselines.

External data source, of event articles and related videos, with end-to-end learning from cross-modal pairs.

Event detection accuracies: per-event average precision (AP) and per-dataset mean average precision (mAP) for MED-13 and MED-14 datasets.

Experiments

Model overview of visual embedding $(model^{\mathcal{V}})$. Bottom: separate embedding $(model^{\mathcal{S}})$

 $\mathcal{L}_{mse}^{\mathcal{N}} =$

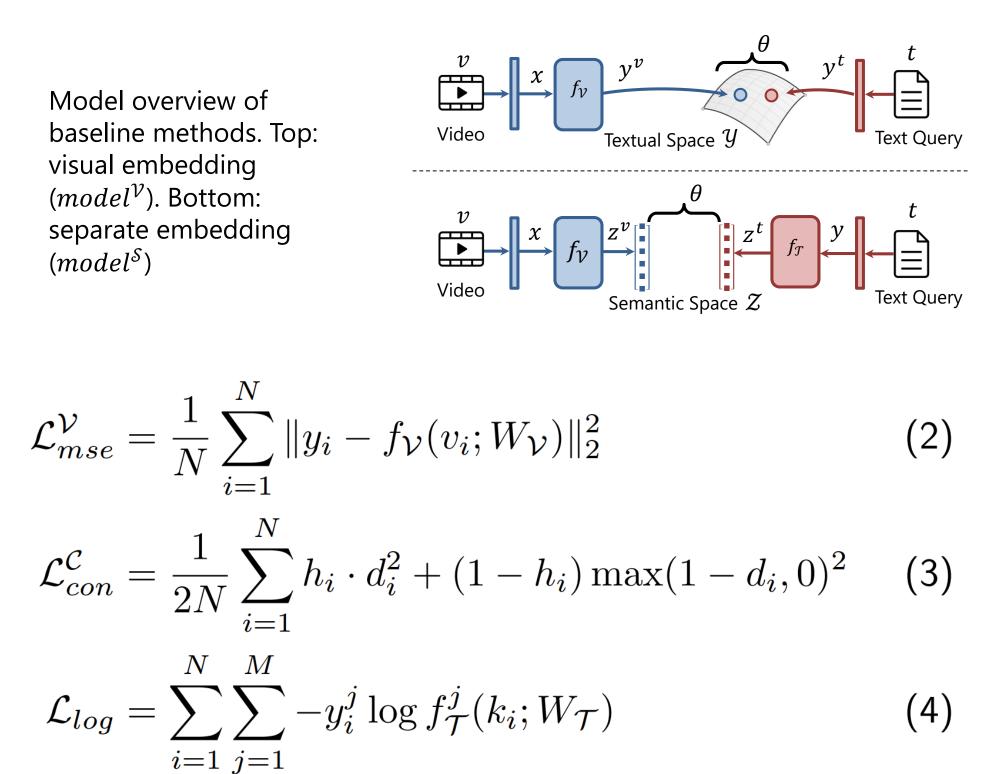
Take Home

The Good: external knowledge (EventNet, WikiHow) is leveraged for better zero-exemplar event detection.

The Bad: no fine-grained event detection, e.g. "fixing musical instrument" vs. "tuning musical instrument".

The Ugly: is average pooling enough for video representation or temporal modeling is required?

IEEE Conference on Computer Vision and Pattern Recognition



$$\frac{1}{N} \sum_{i=1}^{N} \|f_{\mathcal{T}}(t_i; W_{\mathcal{T}}) - f_{\mathcal{V}}(v_i; W_{\mathcal{V}})\|_2^2$$
(5)

Loss functions used to train the baseline models: visual embedding $model^{\mathcal{V}}(2)$, contrastive visual $model^{\mathcal{C}}(3)$, separate embedding $model^{\mathcal{S}}(4)$ and non-metric embedding $model^{\mathcal{N}}(5)$.

GitHub: https://git.io/vS20