
University Of Southampton

Faculty Of Physical and Applied Sciences

School of Electronics and Computer Science

Hierarchical ConvNets for

Traffic Sign Detection and Recognition

by

Noureldien Hussein

A dissertation submitted in partial fulfilment of the degree of

Master of Science in Artificial Intelligence

September 2015

c© Copyright by Noureldien Hussein, 2015.

All rights reserved.

Abstract

Traffic sign detection and recognition play important role in the advances of self-driving cars and

building more informative maps. In this thesis, we focus on solving the problem of traffic sign

localisation, detection and recognition using deep learning methods.

Despite recent literature showed that the problem is solved by applying state-of-the-art machine

learning approaches and achieving super- human classification rates 99.4%, we argue that the

problem is far from being solved. We mention the limitation of the current approaches and con-

clude the challenges. Then, we propose methods to overcome these challenges and push forward

the current limitations. Then, we present a critical analysis for the performance of the proposed

method.

Finally. we compare the performance of the proposed methods against the state-of-the art meth-

ods. We then mention the work that was not realised during the project, so it can be carried out

in the future.

iii

Acknowledgements

I would like to thank my supervisor, Dr Jonathon S. Hare, for all his support and guidance during

and after the master’s project; I will always feel grateful for him. He is a true example of the

unconditional dedication towards his students.

Also, I would like to thank my examiner, Dr Adam Prügel-Bennett for the eye-opening advices.

I learned from him that intellectual honesty and dedication are the key to a genuine scientific

legacy.

Finally, I wish to thank the School of Electronics and Computer Science for providing the best

facilities to the graduate students. I would like to express my gratitude to the University of

Southampton for providing me the opportunity to seek knowledge and fulfil my dreams.

iv

Contents

v

List of Tables

vi

List of Figures

vii

Chapter 1

Introduction

Object detection and object recognition make one of the fundamental problem domains in com-

puter vision. Recent advances in machine learning paves the road for new methods and ap-

proaches to be applied to these problems. Traffic signs are typical example for an object to be

detected and recognised.

1.1 Business Need

Usually, researchers exert huge efforts to research and solve the toughest scientific problems;

unbiased by business needs. Nonetheless, in many cases, these business encourage focusing

the research efforts on one of these scientific problems. This results in accelerating the research

process, which yields in practical solutions in a reasonable time.

One of these problems is traffic sign detection and recognition. We mention 2 specific needs

that accelerated the research efforts for this particular problem.

1.1.1 Autonomous Cars

Cars are a main transportation mean for humans in their day-to-day life. Over the years, this

transportation mean has been transformed by the advances in industry and technology. Currently,

a main modernisation wave is autonomous cars; also known as self-sufficient, self-driving or

driver-less cars. The early attempts to develop autonomous cars can be dated back to 1980s and

credited to Navlab, The Robotics Institute, Carnegie Mellon University [38].

1

Autonomous cars can be formulated as intelligent agents, for the sake of simplicity. As in-

telligent agents, they need to be wander in the environment, perceive signals from it and react

to its events and changes. Vision, or more precisely, machine vision is one of the methods an

agent use to perceive the surrounding environment. Traffic signs are one of important elements

in this environment, along with traffic lights, road lines, other vehicles, pedestrians, ... etc. t Thus,

detecting and recognising traffic signs is a one of the steps towards building autonomous cars.

1.1.2 Driver Assistance

While work is still in progress to achieve the goal of autonomous cars, there is an already realised

business goal; the driver assistance system. A typical car driver can be distracted by traffic and

not notice few traffic signs. Some of them are important for the driver to know, even after being

passed, as speed limit signs. Such system recognises these speeds signs to be displayed on the

dashboard. In early 2010, leading car manufactures began to offer the functionality of traffic sign

recognition in the driver assistance systems [1, 2].

1.1.3 Traffic Signs on Maps

This particular business need is the main reason behind starting the research project of this the-

sis. Due to the collaboration between the University of Southampton and Ordnance Survey, the

UK mapping agency, the later asked for a proof-of-concept of recognising traffic signs in video

footages of streets. These footages are provided with the geo locations where they were taken.

These traffic signs if recognised, is coupled with the geo-locations where they were detected,

then projected on the map. This results in the following benefits:

• Enrich the maps with a new type of data and information. The same way a user can search

a map for places (e.g. restaurants or hospitals), now he/she can search it for the location of,

for example, roundabout signs or speed limit signs.

• Feed the satellite navigation (Sat Nav) systems with the location of the traffic signs. We

mentioned before that some of the recently produced cars are equipped with driver assistant

systems, which come with traffic sign recognition capability. If the location of traffic signs

are added to the maps on the Sat Nav systems, then older cars can enjoy this feature as well,

i.e. knowing the location of traffic signs.

2

1.2 Problem Definition

Researcher have been studying the problem of recognising and locating traffic sign for years.

Thus, it can be scientifically formulated or divided into three main parts:

• Traffic Sign Detection

• Traffic Sign Recognition

• Traffic Sign Tracking

In the following sections, we will divide each main point into smaller ones and discuss each

of them in details. We only discuss the goal of each point. While later on, we discuss the methods

used to achieve these goals.

1.2.1 Detection

Either we are dealing with natural images or video footage, both of them are considered as a

traditional spatial domain or search space. The first stage is localisation and detection. For lo-

calisation, we are only interested in determining the coordinates of the centre of a traffic sign

within the search space (i.e. image/video). While for detection, we want to determine precisely

its boundaries.

1.2.2 Recognition

After we precisely determine the boundaries of a traffic sign, the next stage is to recognise or

classify it. In general, we want to know which traffic sign it is. In rare cases, we are required to

only recognise its super-class.

The speed and accuracy of recognition are the main characteristics of the recognition step. There

has always been a trade off between them. None of them is more preferred than the other. It’s up

to the business need to specify the most important characteristic.

1.2.3 Tracking

In the 2 previous steps we only incorporate the spatial domain. But in this step, we make use

of the spatial domain as well. Tracking takes place for detected traffic signs in video footages.

Where we link the same traffic sign detected in the successive frames of the video. There are

several advantages of tracking.

3

• Increase robustness and accuracy of recognition. Due to lighting condition of transformation

of a traffic sign in one frame of the video, the detector may fail to successful detect it.

• Decrease the computational cost and increase the recognition speed. After detecting and

recognising a traffic sign in a specific area of a frame in the video, we can exclude it from the

computation in the next frames. We can simply depend on region matching to keep tracking

this specific sign until it disappears from the video.

• Accurately calculating the geo-location of a traffic sign. One cannot calculate the depth of

a traffic sign using one frame of the video. But using the sizes of a detected traffic sign in

several successive frames, we can easily calculate its the depth.

1.3 Traffic Signs Categories

It is very important to present in more details the specifications of the object we are trying to

detect and recognise. Traffic signs vary from one country to another. However, in 1968, the United

Nations issued an agreement for unifying the specifications of traffic signs [29]. This agreement

was soon adopted by the majority of European Union countries.

A special case however is the United Kingdom. Since the research project of this thesis is con-

ducted in a United Kingdom university, we mention the categories of UK traffic signs. According

to the Department of Transport, UK Government [12], traffic signs are classified into a handful of

elementary types that vary significantly in shape and colour. We call these types: super-classes or

categories. Figure

Figure 1.1: Traffic signs in the UK
are classified into a handful of el-
ementary types or categories that
vary significantly in shape and
colour. Reproduced from [12].

Moreover, the following are some of these super-classes and their meaning:

• Mandatory: while circle with blue background. Inside it, there is a specific sign or figure.

It generally gives a positive (mandatory) instruction or indicates a route for use only by

particular classes of vehicle. Figure

4

To a great extent, traffic signs fall into one of the aforementioned super-class. However, few

of them have odd shapes. For example, the Stop sign or Give a Way sign in the prohibitory

super-class as shown in figure

(a) Mandatory signs (b) Prohibitory signs (c) Warning signs

(d) Motorway signs (e) Roadwork signs (f) On-street parking signs

Figure 1.2: Examples of traffic signs from different categories (super-classes). In general, super-
classes vary significantly in shape and colour, with few exceptions breaking the rules. (a) manda-
tory, (b) prohibitory, (c) warning, (d) motorway, (e) roadwork, (f) on-street parking.

1.4 Research Datasets

As a typical detection and recognition problem in computer vision and machine learning,

we require labelled dataset to build our models. Here, we mention the most notable traffic

sign datasets available for research projects.

As we mentioned, the problem is formulated as a series of stages: detection, recognition

and tracking. While tracking does not need dataset to be built/trained, both detection and

recognition do. Thus, there is a different type of dataset required for the detection and

recognition stages.

1.4.1 Detection Dataset

The main purpose of a detection dataset is to provide us the search space and the ground

truth. The search space is videos or images that contains traffic sign. While the ground truth

is the location and class name of these signs.

5

The first dataset for detection is the German Traffic Sign Detection Benchmark (GTSDB) [?].

It comprises a total of 900 images, 600 for training and 300 for test. The resolution of each

is 1380x800 pixels. Each one is a natural image for a road or a street in Germany, in which

there might or might not be traffic sign(s). There are in total 846 traffic signs in the 900

images (600 training images with 846 traffic signs and 300 test images with 360 signs). That

means on average, an image have 1 traffic sign. But there images with no traffic signs in and

other images contain up to 4-6 traffic signs. All the signs belong to only 43 classes.

Along with the images, the dataset contains the annotation or labelling. That is the location

of each traffic sign within the natural image. The location is a rectangle determined by upper

left corner (x1, y1) and lower right corner (x2, y2). Also, we are given the category or the

super-class name of each traffic sign.

Unfortunately, this dataset is not rich enough for the following reasons. However, we con-

sider this dataset very helpful for our research.

– Traffic signs are only labelled with the name of the super-class. They are not labelled

with the name of the class.

– Traffic signs belong to only 3 super-classes: prohibitory, mandatory and warning. There

are no signs from any of these super-classes: motorway, roadwork, on-street parking.

The second dataset is the Belgium Traffic Sign (BelgiumTS) [?]. Unlike GTSDB dataset

which contains only still images, BelgiumTS consists of street view videos for random streets

in Belgium. The videos capture the street view from different angles at the same time

using 8 cameras in 8 different positions. This is particularly helpful in stereo image or 3D

tracking research. These videos are provided with annotations of the location (as a bounding

box/rectangle) and class name of each traffic sign that appears in the videos.

From these videos, another subset of the dataset exist. This subset comprises 9006 natural

images with 13444 traffic signs corresponding to 4565 physically distinct signs less than 50

meters from the camera. Also the subset comprises negative examples (i.e true negative) of

16045 background images. The dataset can be obtained from [] an all the technical details

can be found in [33]

6

1.4.2 Recognition Dataset

The main purpose of a recognition dataset is to provide us with samples and their tar-

get/ground truth. A sample is a cropped image such that it contains only one traffic sign.

A ground truth is the class name corresponding to this sign.

The first dataset is the German Traffic Sign Recognition Benchmark (GTSRB) [39]. It com-

prises 51841 images of traffic signs (39209 for training and 12632 for test). These signs belong

to 43 classes and 3 super-classes as illustrated in figure

The second dataset is the Belgium Traffic Sign for Classification (BelgiumTSC) [33]. It

comprises 7125 images of traffic signs (4591 for training and 2534 for test). These samples

correspond to the original BelgiumTS Training and 2D Testing parts but restricted to only

62 classes. Figure

It is more rich than GTSDB in terms of the number of represented classes (62 classes in

BelgiumTSC versus 43 classes in GTSRB). However, it is still limited to only 4 super-classes:

prohibitory, mandatory, warning and on-street parking. Also, 62 is still very small if com-

pared to number classes in real world.

(a) GTSRB dataset (b) BelgiumTSC dataset

Figure 1.3: Super classes and classes included in traffic sign benchmark datasets. (a) German
Traffic Sign Recognition Benchmark (GTSRB) dataset divided into 3 super-classes and 43 classes,
(b) BelgiumTS for Classification (BelgiumTSC) dataset divided into 4 super-classes and 62 classes.

1.5 Roadmap

The rest of this thesis is organised as follows:

1. Chapter 2 – Related Work: we review the previous work and methods related to both

traffic sign detection and recognition. Also, we point out the limitation of each method.

7

2. Chapter 3 – Methods: we present our approach to solve the problem of traffic sign

detection and recognition. For recognition, our main methods is Hierarchical Convolu-

tional Neural Network (H-CNN). For detection, our main method is . We point out that

we discuss Deep Learning We focus on how our approach might contribute to solving

the problem for large-scale datasets (100+ classes). Then, wee discuss the carried out

experiments on both GTSRB and BTSDB datasets.

3. Chapter 4 – Results: We report our results for the carried-out experiments. Then, we

present an objective analysis and critic to these results. Finally, we judge whether or

not our methods (presented in chapter 3) were able to overcome the challenges and

limitations (presented in chapter 2).

4. Chapter 5 – Discussion: In the final chapter, we present the conclusion of the project.

We point the missing steps; that we did not realise with-in the time-frame of the project.

Finally, We mention the natural extensions of our method and the future work.

8

Chapter 2

Related Work

In this chapter, we discuss the previous work done by other researchers to solve the problem

of both traffic sign detection and traffic sign recognition. Also, for each method, we point out

the limitations and the challenges. Later in the next chapter, we will suggest new methods

for how to overcome some of these limitations.

As we previously introduced in chapter

2.1 Traffic Sign Detection

The first stage is building a detector for traffic signs. It’s job is to explore the search space

(i.e. images and video frames) to find the location of traffic signs. This can achieved by

exploiting some or all of the visual features of a traffic sign (for example colour or shape).

The detection process itself can be divided into small components, as follows:

1. Detection Proposal: candidates or regions of interests for the detector to work on.

2. Localisation: precisely determine the location of a traffic sign in the search space, rep-

resented by (x, y).

3. Detection: Determine the boundary box of the traffic sign, represented by the top left

corner (x1, y1) and button right corner (x1, y1).

7

2.1.1 Sliding Window

A successful detector can make use of the detection proposals. Nonetheless, it does not

have to. One can build a successful detector using only the detection component. In such

case, the detector has to be applied to every region in the image in a fashion called sliding

window. The number of overlapped windows extracted from an image (n) depends on: the

image width (w) and height (h), the dimension of the sliding window (d) and the stride s by

which the sliding window is moving; and is calculated as the following:

n =

(
1 +

⌊
w− d

s

⌋)
∗
(

1 +
⌊

h− d
s

⌋)
(2.1)

Figure

Figure 2.1: Applying sliding window to
take samples from the image. Note that
several parameters control how exten-
sive we sample from the image. Both
the window size and the stride length
control if the sliding window will over-
lap or not.

Let’s for example say we want to detect a warning traffic sign in an image with resolution

1380x800. Using sliding window fashion with window dimension = 90 pixels and stride 10

pixels, we extract: (1 + (1380− 90)/10) ∗ (1 + (800− 90)/10) = 130 ∗ 72 = 9360. Thus, in

order to detect a sign, we need to run the detector over ≈ 1000 images. The problem gets

worse when we don’t know the size of the traffic sign in the images. That means a detector

has to operate over multiple scales (i.e. using multiple sizes of the sliding window). This

adds to the complexity of the problem. The problem becomes even more complex when we

search for traffic signs in videos instead of still images. This means that a detector has to

run over 10 30 frames per second (fps); according to the video specifications.

Figure 2.2: Probability (confidence
map) when applying traffic sign de-
tector using sliding window approach.
Overlapping white boxes are the win-
dows classified as traffic sign, yellow
boxes with average confidence while
red box with high confidence.

8

As we mentioned before, the trade-off is always between accuracy and speed of the detector.

In case of sliding window, we sacrifice the speed in favour of the accuracy. But the question

is, how can we meet both of speed and accuracy? How can we build a real time detector

without compromising its accuracy? The answer to this is the detection proposals.

2.1.2 Detection Proposals

A detection proposal is a candidate (i.e. regions of interests with in the search space) for a

detector to operate on. This helps in drastically reducing the research space, hence allowing

the detector to run much faster than in the case of sliding window. now the question is, how

does it work? how we search for proposals? First things first, we have to exploit the features

of traffic signs that are easy to find. In this context, researchers use either colour or shape as

a feature to search for detection proposals.

Colour-based Proposals

J. Greenhalgh et al. [20] used the RGB colour space to search for proposals of traffic signs.

Their contribution was instead of using the RGB values, the image is transformed from RGB

to normalised red-blue ΩRB such that, for each pixel of the original image, we normalise the

red and blue values, then the greater of these two values is used as the final value of the

pixel in the normalised red-blue image.

ΩAB = max
(

R
R + G + B

,
B

R + G + B

)
(2.2)

The step of using normalised values of RGB helped in making the method more robust.

However, the RGB RGB colour space is inherently known for its variance for lighting condi-

tions. It is not the best space to use for colour-based detection. Other researchers depend on

YUV colour space.

Another attempt to exploit the colour feature for detection proposals is done by Y. Wu et

al. [47], where RGB image is converted into grey scale image. Instead of depending on

the traditional linear mapping from RGB to grey scale, they use SVM to achieve non-linear

mapping; in the hope to reduce lightning variance. After that, they depend on the luminosity

of the grey scale as a probability for the detection proposals.

9

Another notable attempt to use the colour is done by Y. Yang et al. [49] where they built

logistic regression models to transform red and blue colours to grey scale; one model for

each colour. T map an image, the models compute the probability of a pixel to belong to red

or blue. They probability models were trained based on real distribution of red and blue

colours taken from traffic signs.

Shape-based Proposals

Another visual feature can be used to search for detection proposals is the shape. Many re-

searchers [49, 20] depend on method called Maximally Stable Extremal Regions (MSER) for

extracting detection proposals. MSER in it’s simplest definition is a blob detection methods,

and it usually operates on the grey scale images. It is not specific for traffic sign detection

and can be used to detect other objects. While it is not efficient, it’s main advantage is speed.

That’s why it is used in the researches to build real time traffic sign detection [49, 20].

Other researchers exploit the natural shapes of traffic signs to extract detection proposals.

As shown in figure

2.1.3 Detection

The core component in the stage of traffic sign detection is the detector it self. Whether we

depend on detection proposal or sliding window, the detector is the component to judge

whether an image is a traffic sign or not. There is a huge body of literature discussing

detection methods for traffic signs [49, 20, 26, 27]. These methods generally tend to follow a

main scheme or approach: hand-crafted feature descriptors and extractors to extract relevant

features followed by a feature classifier to rule out false positives. In the following, we

discuss some of these feature extractors and classifiers.

Histogram of Oriented Gradients

Histogram of Oriented Gradients (HOG) has proven success as a general shape detector, for

example in pedestrian detection [11] and text detection in natural images [15]. It is currently

accepted that HOG is an effective way to capture shape information. This encourages many

researcher to apply HOG to the problem of traffic sign detection. J. Greenhalgh et al. [20]

used HOG to detect traffic signs based on the shape only (circle, triangle, rectangle). Figure

10

Figure 2.3: On the left, an image of traf-
fic sign is divided into regions (win-
dows), where HOG is applied to each of
them. On the right, the result of HOG
at each region. Reproduced from [20].

Integral Channel Features

Integral Channel Features (ICF), introduced by P. Dollár et al. [14], is another detector used

for shape detection. It has proven success several applications, for example pedestrian detec-

tion [14]. This encourage researchers to apply this ICF detector to traffic signs. Researchers

M. Mathias et al. [28] not only applied ICF to detect traffic signs and reach state-of-the-art

performance, but also they argued that the problem of traffic sign detection and recognition

has been finally solved. Figure

Figure 2.4: At the top, the result of applied the different channels of ICF detector. At the bottom,
the heat map reflecting the probability or confidence of the detector at each channel. Reproduced
from [28].

2.1.4 Haar-like Features

Haar-like features has proven huge success when used by the researchers P. Viola et al.

(known as Viola-Jones) for face detection. They built a cascade of detectors using AdaBoost

method. They added simple features at the beginning of the cascade to reject weak regions,

thus improving the speed of the detector; while complex features at the end of the cascade

ensure good detection results. Thus, viola-Jones method achieved the difficult balance be-

tween detection accuracy and speed. The same approach is applied to traffic sign detection

by C. Lui et al.. [27] However, they used the extended haar-like features to enhance the

performance. Figure

11

Figure 2.5: Extended haar-
like features used for traffic
sign detection. Reproduced
from [27].

2.1.5 Locale Binary Pattern

Perhaps one of the most controversial detectors used for traffic sign detection is the Multi-

block Normalised Locale Binary Pattern (MN-LBP) introduced by C. Lui et al. [26]. To find

all the traffic signs in a certain image using this detector, we apply the kernel of the detector

on this image. At each pixel, the kernel sums the values of eight rectangles around the centre

are compared with an average value to obtain a binary sequence. Two kernels are illustrated

in figure

Figure 2.6: Kernels used by MN-
LBP (top) and Titled MN-LBP (bot-
tom) features to detect traffic signs.
Reproduced from [26].

2.1.6 Deep Learning

Deep learning methods has proven success in several applications in machine learning. In

many cases, it out-performed the veteran Support Vector Machine (SVM). For the appli-

cation of computer vision, one of the deep learning networks seem to excel, it is called

Convolutional Neural Network (CNN). Recently, CNN became the baseline feature extrac-

tor for many problems in computer vision. They have proven success in several applications

for object detection. A. Razaven et al. [34] presents an extensive comparison between off-

the-shelf CNN against domain specific hand-crafted feature extractors. They pointed out

that the CNN outperformed the traditional feature extractors in many application.

Based on their performance and success in the recent years, deep CNNs are applied to many

applications. For example large-scale visual detection and recognition [36], joint positions

12

for human poses [42] and text detection in natural images [22, 45, 10]. However, there is no

contribution in using CNNs for traffic sign detection.

2.1.7 Limitations and Challenges

After we presented the related work and methods used for traffic sign detection, in this

section we point out the limitations of these methods. The sole reason for mentioning the

limitations is to encourage the research and push forward the boundaries of science. We do

value all the notable work done by the researchers to solve these tough problems.

As we mentioned, the main approach used for traffic sign detection is feature engineering.

It depends on either colour or shape or both as the main visual features. Exploiting shape

and colour as visual features is not limitation, it is hand-crafting features for them that has

limitations. On the one hand, for the shape-based feature extractors, arguably the biggest

limitation is the need to hand-craft these extractors. This is not automated process and

is labour intensive. Further more, different extractors are needed to detect traffic signs of

different super-classes [16, 7]. On the other hand, colour-based feature extractors are prone

to failure. That’s because colour is an unreliable and depends heavily on the lightning

conditions [7].

2.2 Traffic Sign Recognition

The second stage in our project is the traffic sign recognition. The goal is to classify an

image, which contains only the sign, to the correct class. This stage is heavily dependent on

the existence of well prepared labelled datasets. The images must be cropped so that each

image contains only the traffic sign and labelled with the class of the traffic sign.

Huge body of literature discuss several methods to classify/recognise traffic signs. It is

the usual case that these methods follow two main schemes: feature engineering and deep

learning.

2.2.1 Feature Engineering

In feature engineering, researchers hand-craft feature extractors to extract and describe rele-

vant features from the images. Then they train a classifier in order to classify these features

13

to the corresponding classes. In this approach, the extractors vary according to the charac-

teristics of the object we want to classify. The extractors exploit visual features of the object,

like colours, edges, corners, blobs or shapes. In some applications, colour is the most impor-

tant feature. As an example, classifying fruits, since some of them are similar in shape and

size. In other applications, shapes become more important than colours. As an example,

scene classification. However, some feature extractors exploit more than one visual feature

to achieve better classification.

It is usually the case that feature extractors used in detection are used in recognition as well.

In section

2.2.2 Deep Learning

In deep learning, there is no feature engineering involved. The network is able to learn

relevant features according to the task in hand. Nonetheless, these learned features are

generally edges and corners. In other words, the network tries to learn and develop edge

extractors. There are few types of deep learning networks applied to object classification

problems, for example: Deep Belief Networks (DBN) and Convolutional Neural Network

(CNN). It is the latter that has proven huge success in many applications in computer vision.

It is save to say that it outperforms the most powerful problem specific hand-crafted feature

extractors. That means an off-the-shelf CNN can replace the traditional hand-crafted feature

extractor, as shown in figure

Based on their performance and success in the recent years, deep CNNs are applied to many

applications. For example large-scale visual detection and recognition [36], joint positions

for human poses [42] and text detection in natural images [22, 45, 10]. However, there is no

contribution in using CNNs for traffic sign detection.

It wasn’t until 2011 that a classification challenge for traffic signs was announced (German

Traffic Sign Detection) that scientists pay more attention to this problem. Probably because

the challenge indulged the researchers with a well prepared dataset for traffic signs. Another

reason is the leap made by deep learning in object recognition. In the following, we discuss

notable deep learning methods traffic sign recognition. But first, let’s discuss NN and CNN

in more details.

14

2.2.3 Neural Networks

Artificial Neural Network (NN) is a biologically inspired network that can be trained using

labelled dataset. The output of the neuron is a weighted sum of the input signals. It can be

mathematically calculated as:

y = wT x + b (2.3)

=

(
n

∑
i=1

wixi

)
+ b (2.4)

Where x = [x1, x2, x3, . . . , xn]T is the input vector, w = [w1, w2, w3, . . . , wn]T is the

weight vector and b is the bias. The output can be subjected to an activation function, some

examples are: linear, step, ramp, sigmoid or Gaussian. If we take for example the signum as

the activation function, the output will be:

y = sgn(wT x + b) (2.5)

Where sgn is the signum function. During the training of the network, it evolves it’s belief

by updating some values, specifically the weight w and the bias b. The simplest form of this

network is the perceptron. Figure

Figure 2.7: The analogy between the
2 counterparts, the biological neuron
(top) and the artificial neuron (bot-
tom). Both of them receive input sig-
nals from previous neurons, do a small
processing (decision making) based on
weighted sum of the input signals, and
finally results in an output signal. Re-
produced from [25].

Perceptron was first used to linearly-seperable data. However, one of it’s critics is not being

able to generalise for non-linearly separable problems. An example for that is classifying the

XOR problem. More over, the multi-layer perceptron (MLP) was not easy to train. There was

a lack of simple training method. It wasn’t until the back-propagation learning algorithm

was introduced by D. Rumelhart et al. [35] that the MLP began to gain more attention.

15

MLP

The convolutional and subsampling layers result in extracting relevant features of the input

images. The next step is to use a classifier to predict to which category/class the input image

belongs to. In our example, Le-Net5, the researchers used MLP as a classifier. It is one of

the forms of the neural network, where we stack layers of perceptron networks. These layers

are fully connected. The first layer is called the input layer. The middle layers are called the

hidden layers. While the last layer is called the output. Figure

Figure 2.8: Example of MLP with input,
hidden and output layers. Note that all
the layers are fully connected. Repro-
duced from [32].

Backpropagation

In order to classify features in the Le-Net5, we have to train the network. For this, we

need training algorithm. Which is the method of updating the parameters of the network

according to the it’s result.

One of the most successful learning algorithms is backpropagation. It was first introduced

by the researchers D. Rumelhart et al. [35]. It is based on a very simple idea: if the

classification is correct, we don’t update the parameters. If wrong, we update the parameters

in the direction of minimising the error. How we know this direction? By calculating the

gradient of the error, starting from the output layer. But how we update the parameters

of the hidden layers? The same idea, by using the error we calculated from the output

layer and propagating it to the previous hidden layer, hence the naming of the algorithm:

back-propagation. It was first applied to the MLP and has proven huge success.

So, how to describe it mathematically? Let l be layer number in the MLP, let δ(l) be the

error at the layer l. Let J(W, b; x, y) be the cost function of the error, where (W, b) are the

parameters (weight W and bias b) and (x, y) are the input output pair of the training set.

Backpropagation means propagate the error form the front to the back layers, hence the error

16

at layer l can be calculated using the values at the layer l + 1 as the following:

δ(l) = ((W(l))(T)δ(l+1)) ∗ f
′
(z(l)) (2.6)

and the gradients of the error are:

5W(l) J(W, b; x, y) = δ(l+1)(a(l))T (2.7)

5b(l) J(W, b; x, y) = δ(l+1) (2.8)

Researchers Y. LeCun et al. [23] proved that backpropagation can be used to successfully

train CNN. In case of the convolutional or subsampling layers, the error can be calculated

as:

δ
(l)
k = upsample

(
(W(l)

k)Tδ
(l+1)
k

)
∗ f

′
(z(l)k) (2.9)

where k is the index of the filter in the convolutional or subsampling layer, f is the activation

function.

2.2.4 Convolutional Neural Networks

As we discussed, feature classification can be achieved by MLP. But what about extracting

features using deep learning. In the following, we discuss them main building block of the

Convolutional Neural Network (CNN). It has become the de-facto feature extractor of many

problems in computer vision.

The first introduction to Convolutional Neural Network (CNN) was made by researchers

Y. LeCun et al. [23]. First, we know that a traditional computer vision problem comprises

feature extraction followed by feature classification. The later could be achieved by the bio-

logically inspired NN. It has proven success in many classification problems. The researchers

Y. LeCun et al. questioned why can’t we train the machine to extract relevant features the

same way we train it to classify them. The intuition behind the CNN was to build a machine

capable of learning relevant features. CNN was applied to handwritten digit recognition

and achieve unrepresented classification rates [23]. The researchers experimented several

forms of the CNN known as the LeNet. Figure

17

Figure 2.9: Le-Net 5, one of the earliest CNN introduced. It consists of feature extractor and
feature classifier. The extractor is 2 convolutional + subsampling layers, while the classifier is
2-layer fully connected. Reproduced from [23].

Convolution

It is the first step in the CNN. Its main purpose is to mix larger information into smaller ones

in an ordered way. Think of it as summing-up the information represented by a small local

region of an image and representing it using only one pixel in the output image. The output

image (i.e. the result of the convolution) is called a feature map. Another meaning for the

convolution is that we want to get the most dominant piece of information represented by

this local region.

Convolution is controlled by an important parameter, called the kernel size, which is the

length of the kernel (local region) that’s is going to be summed up and represented by one

pixel. Of course the bigger the kernel, the smaller the convolved image. Because it means

we want to sum-up the information of larger local patches (regions) into one pixel.

So, how do we convolve an image? As in the case of Le-Net5, let’s start by an input image

of 32x32 pixels. As we can see in figure

Figure 2.10: On the left, the input image
(greyscale). In the middle, the kernel used
to convolve the input image, also called the
filter. On the right, the result of the convolu-
tion, also called the filter map. Reproduced
from [13].

One layer of convolution can contain as many as 100 kernels (i.e. filters). It is up to the

researcher to determine how many kernels he/she needs. Currently, there are no solid

mathematical foundations for the number of kernels used in a convolutional layer. However,

usually researchers add from 10 to 200 filters in the first convolutional layer.

18

From where did we get the values of the kernel? In the beginning of the training of the CNN,

we initialise these values. There are different techniques for how to initialise the values. One

of them is to initialise them as zero. Another way is to initialise them randomly within the

range -1 to 1. It is found that random initialisation is better than zero-initialisation, learning

coverages faster.

It is important to mention that the weights and bias values are shared among the same

kernel, which means they are shared for each filter map. The reason behind this is that

images are stationary. Features found in a local region of the image are likely to be found

in other local parts. So, if the kernel (filter) acts as a feature extractor, so it make sense to

use it all over the image. Researchers I. Sutskever et al. [40] discuss in details initialisation

methods for the parameters of CNN, specially in the deep learning applications and how it

affects the learning of the network.

Subsampling

The next step after convolution is subsampling. We want out network to be location invari-

ant. In other words, we want to improve the network capacity to the changes in location of

the features in the image. We don’t want an image of, for example number 7, to be miss-

classified because the location of the number changed 5 pixels to the right. Subsampling

offers a solution to this. In this step, we down-sample the information represented in the

convolved image. For example, we down-sample every local region of 2x2 into only one

pixel. This means that the network will activate if any of these 4 pixels is the has the right

value. Figure

The parameter controlling the down-sample factor is the kernel size of the subsampling. As

in our example, figure

Figure 2.11: On the left, the input image
(greyscale). On the right, the result of the sub-
sampling, after using max-pooling with 2x2
kernel. Reproduced from [17].

19

Convolution and Subsampling

Multiple level of representation is one of the goals of deep learning. In the case of CNN, it

is applied by repeating the convolutional and subsampling layers many times. Traditionally,

if we have a CNN with 3 or more layers of convolution and subsampling, then it is called

deep network. In the example of Le-Net5 network, as in figure

2.2.5 Deep Networks

After we have discussed the main building blocks of deep learning used in traffic sign

recognition, let’s discuss the notable approaches applied to this specific problem. After the

announcement of German Traffic Sign Recognition Benchmark (GTSRB) competition [39] in

2011, it attracted bright minds. Many researchers excreted notable efforts in this problem.

The top scoring methods and approaches are deep learning, depending mainly on deep

CNN. In the following, we discuss them.

Mluti-column DNN

Researchers Ciresan et al. [8] suggest a committee of Deep Neural Networks (DNN), known

as Multi-column DNN (MC-DNN), trained using the same training set. Previous experi-

ments suggest that different networks trained using the same training set will develop the

same belief, i.e will result in the same performance. Thus, the researchers subjected the train-

ing set to stochastic distortion before each training epoch. Which means that each network

in the committee is train using practically different training set. Figure

It is to be mentioned that the researchers depend on the coloured images for training their

network. But in order to avoid the colour variance problems of the RGB space, they mapped

the RGB coloured images to another colour space called Lab-Space. The intuition behind

this is that Lab-Space has intensity as one of its components. This technique is very sim-

ilar to changing the RGB to YUV which have one of it’s component as the luminance (Y).

Beside that, all the input images were pre-processed before training the network. The pre-

processing comprise the following steps:

– Image Adjustment (Imadjust)

– Histogram Equalization (Histeq)

– Adaptive Histogram Equalization (Adapthisteq)

20

such as unsupervised pre-training [29, 24, 2, 10] or care-
fully prewired synapses [27, 31].

(3) The DNN of this paper (Fig. 1a) have 2-dimensional
layers of winner-take-all neurons with overlapping recep-
tive fields whose weights are shared [19, 1, 32, 7]. Given
some input pattern, a simple max pooling technique [27]
determines winning neurons by partitioning layers into
quadratic regions of local inhibition, selecting the most ac-
tive neuron of each region. The winners of some layer rep-
resent a smaller, down-sampled layer with lower resolution,
feeding the next layer in the hierarchy. The approach is
inspired by Hubel and Wiesel’s seminal work on the cat’s
primary visual cortex [37], which identified orientation-
selective simple cells with overlapping local receptive fields
and complex cells performing down-sampling-like opera-
tions [15].

(4) Note that at some point down-sampling automati-
cally leads to the first 1-dimensional layer. From then on,
only trivial 1-dimensional winner-take-all regions are pos-
sible, that is, the top part of the hierarchy becomes a stan-
dard multi-layer perceptron (MLP) [36, 18, 28]. Recep-
tive fields and winner-take-all regions of our DNN often
are (near-)minimal, e.g., only 2x2 or 3x3 neurons. This re-
sults in (near-)maximal depth of layers with non-trivial (2-
dimensional) winner-take-all regions. In fact, insisting on
minimal 2x2 fields automatically defines the entire deep ar-
chitecture, apart from the number of different convolutional
kernels per layer [19, 1, 32, 7] and the depth of the plain
MLP on top.

(5) Only winner neurons are trained, that is, other neu-
rons cannot forget what they learnt so far, although they
may be affected by weight changes in more peripheral lay-
ers. The resulting decrease of synaptic changes per time
interval corresponds to biologically plausible reduction of
energy consumption. Our training algorithm is fully online,
i.e. weight updates occur after each gradient computation
step.

(6) Inspired by microcolumns of neurons in the cere-
bral cortex, we combine several DNN columns to form a
Multi-column DNN (MCDNN). Given some input pattern,
the predictions of all columns are averaged:

yiMCDNN =
1

N

#columns∑

j

yiDNNj
(1)

where i corresponds to the ith class and j runs over
all DNN. Before training, the weights (synapses) of all
columns are randomly initialized. Various columns can be
trained on the same inputs, or on inputs preprocessed in
different ways. The latter helps to reduce both error rate
and number of columns required to reach a given accuracy.
The MCDNN architecture and its training and testing pro-
cedures are illustrated in Figure 1.

Input

Convolution

Max Pooling

Max Pooling

Convolution

Fully connected

Fully connected

(a)

P0

D
N
N

D
N
N

P1

D
N
N

D
N
N

Pn-1

D
N
N

D
N
N

Image

AVERAGING

(b)

D

TRAINING

Image P DNN

(c)

Figure 1. (a) DNN architecture. (b) MCDNN architecture. The
input image can be preprocessed by P0 − Pn−1 blocks. An ar-
bitrary number of columns can be trained on inputs preprocessed
in different ways. The final predictions are obtained by averag-
ing individual predictions of each DNN. (c) Training a DNN. The
dataset is preprocessed before training, then, at the beginning of
every epoch, the images are distorted (D block). See text for more
explanations.

3. Experiments

We evaluate our architecture on various commonly used
object recognition benchmarks and improve the state-of-
the-art on all of them. The description of the DNN architec-
ture used for the various experiments is given in the follow-
ing way: 2x48x48-100C5-MP2-100C5-MP2-100C4-MP2-
300N-100N-6N represents a net with 2 input images of size
48x48, a convolutional layer with 100 maps and 5x5 filters,
a max-pooling layer over non overlapping regions of size
2x2, a convolutional layer with 100 maps and 4x4 filters,
a max-pooling layer over non overlapping regions of size
2x2, a fully connected layer with 300 hidden units, a fully
connected layer with 100 hidden units and a fully connected
output layer with 6 neurons (one per class). We use a scaled
hyperbolic tangent activation function for convolutional and
fully connected layers, a linear activation function for max-
pooling layers and a softmax activation function for the
output layer. All DNN are trained using on-line gradient
descent with an annealed learning rate. During training,
images are continually translated, scaled and rotated (even
elastically distorted in case of characters), whereas only the
original images are used for validation. Training ends once
the validation error is zero or when the learning rate reaches
its predetermined minimum. Initial weights are drawn from
a uniform random distribution in the range [−0.05, 0.05].

Figure 2.12: (a) Architecture of DNN. (b) Ar-
chitecture of the committee of DNN, known
as Multi-column DNN (MC-DNN). (c) Pre-
processing the input images is done only
once, whereas distortion is done stochasti-
cally before starting a new training epoch. Re-
produced from [8].

– Contrast Normalization (Conorm)

Figure

Figure 2.13: The steps of preprocessing applied to the images of the training set. Notice that the
histogram is better distributed after pre-processing than before it. Reproduced from [8].

Multi-scale CNN

Researchers Sermanet et al. [37] used multi-scale CNN to solve the same problem. Figure

2.1 shows the architecture of the used network. They fed the fully-connected part of the

network with features from 2 different scales (at stage 2). The intuition behind this step is to

increase the network capacity for the input invariance and to enrich feature representation

before classification. As a result, they reached accuracy of 98.3% in the GTSRB competition.

21

Fig. 2. A 2-stage ConvNet architecture. The input is processed in a feed-
forward manner through two stage of convolutions and subsampling, and
finally classified with a linear classifier. The output of the 1st stage is also
fed directly to the classifier as higher-resolution features.

form-factor parallel hardware based on FPGAs or GPUs. Em-

bedded systems based on FPGAs can run large ConvNets in

real time [11], opening the possibility of performing multiple

vision tasks simultaneously with a common infrastructure.

The ConvNet was trained with full supervision on the color

images of the GTSRB dataset and reached 98.97% accuracy

on the phase 1 test set. After the end of phase 1, additional

experiments with grayscale images established a new record

accuracy of 99.17%.

II. ARCHITECTURE

The architecture used in the present work departs from

traditional ConvNets by the type of non-linearities used,

by the use of connections that skip layers, and by the use

of pooling layers with different subsampling ratios for the

connections that skip layers and for those that do not.

A. Multi-Scale Features

Usual ConvNets are organized in strict feed-forward lay-

ered architectures in which the output of one layer is fed

only to the layer above. Instead, the output of the first stage

is branched out and fed to the classifier, in addition to the

output of the second stage (Fig. 2). Contrary to [12], we use

the output of the first stage after pooling/subsampling rather

than before. Additionally, applying a second subsampling

stage on the branched output yielded higher accuracies than

with just one. Therefore the branched 1st-stage outputs are

more subsampled than in traditional ConvNets but overall

undergoes the same amount of subsampling (4x4 here)

than the 2nd-stage outputs. The motivation for combining

representation from multiple stages in the classifier is to

provide different scales of receptive fields to the classifier.

In the case of 2 stages of features, the second stage extracts

“global” and invariant shapes and structures, while the first

stage extracts “local” motifs with more precise details. We

demonstrate the accuracy gain of using such layer-skipping

connections in section III-B.

B. Non-Linearities

In traditional ConvNets, the non-linear layer simply con-

sists in a pointwise sigmoid function, such as tanh(). How-

ever more sophisticated non-linear modules have recently

been shown to yield higher accuracy, particularly in the small

training set size regime [9]. These new non-linear modules

include a pointwise function of the type | tanh()| (rectified

sigmoid), followed by a subtractive local normalization,

and a divisive local normalization. The local normalization

operations are inspired by visual neuroscience models [13],

[14]. The subtractive normalization operation for a given site

xijk computes: vijk = xijk − ∑
ipq wpq .xi,j+p,k+q , where

wpq is a Gaussian weighting window normalized so that∑
ipq wpq = 1. The divisive normalization computes yijk =

vijk/max(c, σjk) where σjk = (
∑

ipq wpq.v
2
i,j+p,k+q)

1/2.

For each sample, the constant c is set to the mean(σjk) in

the experiments. The denominator is the weighted standard

deviation of all features over a spatial neighborhood.

Finding the optimal architecture of a ConvNet for a given

task remains mainly empirical. In the next section, we

investigate multiple architecture choices.

III. EXPERIMENTS

A. Data Preparation

1) Validation: Traffic sign examples in the GTSRB

dataset were extracted from 1-second video sequences, i.e.

each real-world instance yields 30 samples with usually

increasing resolution as the camera is approaching the sign.

One has to be careful to separate each track to build a

meaningful validation set. Mixing all images at random

and subsequently separating into training and validation will

result in very similar sets, and will not accurately predict

performance on the unseen test set. We extract 1 track at

random per class for validation, yielding 1,290 samples for

validation and 25,350 for training. Some experiments will

further be reported using this validation set. While reporting

cross-validated results would be ideal, training time currently

prohibits running many experiments. We will however report

cross-validated results in the future.

2) Pre-processing: All images are down-sampled or up-

sampled to 32x32 (dataset samples sizes vary from 15x15

to 250x250) and converted to YUV space. The Y channel

is then preprocessed with global and local contrast normal-

ization while U and V channels are left unchanged. Global

normalization first centers each image around its mean value,

whereas local normalization (see II-B) emphasizes edges.

Size Validation Error
Original dataset 25,350 1.31783%
Jittered dataset 126,750 1.08527%

TABLE I

PERFORMANCE DIFFERENCE BETWEEN TRAINING ON REGULAR

TRAINING SET AND JITTERED TRAINING SET.

Additionally, we build a jittered dataset by adding 5

transformed versions of the original training set, yielding

126,750 samples in total. Samples are randomly perturbed in

position ([-2,2] pixels), in scale ([.9,1.1] ratio) and rotation

([-15,+15] degrees). ConvNets architectures have built-in

invariance to small translations, scaling and rotations. When

a dataset does not naturally contain those deformations,

adding them synthetically will yield more robust learning

to potential deformations in the test set. We demonstrate the

error rate gain on the validation set in table I. Other realistic

perturbations would probably also increase robustness such

as other affine transformations, brightness, contrast and blur.

Figure 2.14: Layout of multi-scale CNN. Notice that the MLP classifier is fed by features from 2
different convolutional layers. Reproduced from [37].

In their efforts to avoid the variance problems of using the RGB space, the researchers trans-

formed the images to YUV colour space. For the pre-processing, they only normalised the

Y channel. They left a room for doing more research on normalizing the other channels and

how would this effect the overall performance of the network.

Another important step is used by the researchers is augmenting the given training set. The

reason is to increase the network capacity and result in more robust network. The network

is likely to experience these deformations in the test set. The following deformations were

applied to each image in the training set:

– Position: [-2,2] pixels.

– Scale: [.9,1.1] ratio.

– Rotation: [-15,+15] degrees.

The researcher suggested that other realistic perturbations/deformation could have been

applied. They argued that these perturbations would have probably increase robustness of

the network. These are some examples: affine transformations, brightness, contrast and blur.

2.2.6 Feature Classification

MLP is the de-facto classifier used in the CNN to classify the features extracted from the

convolutional and subsampling layers. However, other classifiers can be used. Huge body

of literature discuss the usage of other classifiers in the problem of traffic sign recognition.

In the following, we discuss the most notable contributions/methods.

22

Support Vector Machine

Replacing the MLP by other classifiers in the CNN can be achieved in other different fash-

ions. Y. Tang [41] replaced the MLP with a linear SVM. This resulted in improving the

network performance. In their experiment using MNIST dataset [24], the error rate was

reduced from 0.99% using Softmax to 0.87% using DLSVM. Let’s discuss the SVM in more

details.

Support Vector Machine (SVM) has proven success in classification problems. In its simplest

form, the linearly separable binary case, it can learn the optimal hyperplane that separate the

data into 2 classes. optimality means maximising the margin (separating distance) between

the hyperplane and the data samples. Figure

Figure 2.15: Example of SVM,
where input data is separated into
2 classes. SVM find the optimal
hyperplane separating the input
classes linearly.

Suppose we have a training set consists of input X and target Y. Suppose we are working

in a 2D space where the input sample X = (x1, x2) and the corresponding output (target) Y

is either 0 or 1 according to the class it belongs to (binary classifier as we mentioned). The

objective of the SVM is to maximise the margin between the separation hyperplane and the

data samples. It can be formulated as a quadratic optimisation problem. In this simplest

form, it ca be mathematically described as the following:

minimise
w′ ,b′

‖ w
′ ‖2

2
(2.10)

subject to yk(w
′Txk − b

′
) ≥ 1, k = 1, 2, 3, . . . , P. (2.11)

where w, b are the weight and bias describing the separation hyperplane, P is the number

of input samples in the training set.

Of course the simplest case of the SVM (binary and linearly separable) is not of much useful-

ness in real life. Most data belongs to many classes and are not linearly separable. However,

23

the SVM can tackles these cases. For multi-class problems, the SVM can be trained in a

fashion called: 1-versus-all. For the separability problem, the introduction of the slack vari-

able η helps in relaxing the optimisation problem and obtaining a good classifier. It is also

known as soft margins. SVM also can solve the linearly non-separable problems by using

the kernel trick. In which, the data is projected to higher dimensional space where it can

be linearly separated using a hyperplane. Then, it can be formulated as an optimisation

problem, mathematically described as:

minimise
α

P

∑
k=1

αk −
1
2

P

∑
k,l=1

αkαlykylK(xk, xl) (2.12)

where K is the kernel function that maps the data to higher dimensional space.

Researcher Y. Tang [41] proved that the overall performance of the CNN can be improved

when replacing the MLP classifier with SVM classifier. That’s the reason we mention using

the SVM in this thesis.

Extreme Learning Machine

Zing et al. [51] used CNN. However, instead of using Multilayer Perceptron (MLP) or

Support Vector Machine (SVM) as the classifier of the convolutional features, they used

Extreme Learning Machine (ELM). They argued that this step results in better performance

in classifying the features, hence, improves the overall performance of the CNN. Another

advantage of using ELM is significantly decreasing the training time of the classifier.

2.2.7 Real Time Recognition

Another contribution is done by Yang et al. [49], who discussed the ability of carrying out

both traffic sign detection and recognition in real time using conventional hardware.

2.2.8 Limitation and Challenges

Mathiaset al. [28] questioned if the traffic sign problem is considered as solved, specially

when the state-of-the-art deep learning methods came close to human classification rates

[8, 37]. We argue that the problem is yet far from being solved, for the following reasons.

24

After we discussed the state of the art methods used in traffic sign recognition, it’s save to

mention their limitations and challenges. In the next chapter, we will present the methods

presented by the thesis to overcome some of these limitations.

However, given the time-limit of this work, we were not able to present and experiment

methods to overcome all of these challenges. But we will give our suggestions in the last

chapter; conclusion and discussion.

Number of Classes

The performance of most of the recent work is benchmarked using the well-cited GTSRB

dataset [39], which comprise only 43 classes. Not only the number 43 is far from reality,

where 100+ classes exist, but also these 43 classes are represent only 3 super-classes of traffic

signs: prohibitory, mandatory and danger. Figure

The situation does not change if we consider another popular benchmark dataset, BelgiumTS

[33], which comprises 3 super-classes and 63 classes. For further overview on how rich

(in terms of classes and super-classes) traffic signs are in real life, please refer to Vienna

Convention on road signs and signals [19, 29, 30, 46].

Figure 2.16: All the 43 classes of
the GTSRB dataset, divided into 3
super-classes: prohibitory, danger
and mandatory. Reproduced from
[49].

Further more, we cast doubt on the network ability to achieve the same high accuracy rates

when the number of classes per a super-class increases from tens to hundreds. Worth men-

tioning that the number of feature maps in the network layers grow exponentially for each

new class added.

Deformed Data

In the aforementioned methods and benchmark datasets, the distortion in the images is

somewhat limited. Also, it is a common practice to subject the training data to 3 different

25

types of distortion before training [8, 9, 37], in order to increase the network capacity and

improve its generalisation performance:

– Scaling with factors from 0.9% to 1.1%

– Rotation with angles from 15◦ to -15◦

– Perturbation in position with -2 pixels (left, right, top and bottom)

However, what we meant here is a more severe type of distortion. To be specific, figure

Attentional Neural Network: Feature Selection Using
Cognitive Feedback

Qian Wang
Department of Biomedical Engineering

Tsinghua University
Beijing, China 100084

qianwang.thu@gmail.com

Jiaxing Zhang
Microsoft Research Asia

5 Danning Road, Haidian District
Beijing, China 100080

jiaxz@microsoft.com

Sen Song ∗
Department of Biomedical Engineering

Tsinghua University
Beijing, China 100084

sen.song@gmail.com

Zheng Zhang * †
Department of Computer Science

NYU Shanghai
1555 Century Ave, Pudong
Shanghai, China 200122

zz@nyu.edu

Abstract

Attentional Neural Network is a new framework that integrates top-down cog-
nitive bias and bottom-up feature extraction in one coherent architecture. The
top-down influence is especially effective when dealing with high noise or dif-
ficult segmentation problems. Our system is modular and extensible. It is also
easy to train and cheap to run, and yet can accommodate complex behaviors. We
obtain classification accuracy better than or competitive with state of art results
on the MNIST variation dataset, and successfully disentangle overlaid digits with
high success rates. We view such a general purpose framework as an essential
foundation for a larger system emulating the cognitive abilities of the whole brain.

1 Introduction

How our visual system achieves robust performance against corruptions is a mystery. Although its
performance may degrade, it is capable of performing denoising and segmentation tasks with dif-
ferent levels of difficulties using the same underlying architecture. Consider the first two examples
in Figure 1. Digits overlaid over random images are harder to recognize than those over random
noise, since pixels in the background images are structured and highly correlated. It is even more
challenging if two digits are overlaid altogether, in a benchmark that we call MNIST-2. Yet, with
different levels of efforts (and error rates), we are able to recognize these digits for all three cases.

Figure 1: Handwriting digits with different corruptions. From left to right: random background
noise, random background images, and MNIST-2

∗These authors supervised the project jointly and are co-corresponding authors.
†Work partially done while at Microsoft Resarch Asia

1

Figure 2.17: Three different types of never-addressed-before input deformation in traffic sign
recognition problem. From left to right: noisy background, random background and overlaying
characters. Reproduced from [44].

26

Chapter 3

Methods

In this chapter, we propose the methods to overcome some of the aforementioned limita-

tions and challenges of traffic sign detection and recognition. Due to time-limitations of the

research of this thesis, we couldn’t overcome some of these limitations and challenges. So,

we will discuss them in the last chapter, conclusion.

As we discussed in the previous chapters (

3.1 Traffic Sign Recognition

In the GTSRB competition, deep learning achieved super-human recognition levels, with

success rates 99.5% [8]. However, the database comprise only 43 classes of traffic signs.

Moreover, the signs belong to only 3 super-classes: mandatory, prohibitory and danger. This

is far from real world situation where hundreds of classes and more than 6 super-classes

exist.

Suppose we want to build a CNN to classify data into m classes. Several parameters are

crucial in order to successfully build a CNN. These parameters are:

– Number of convolutional layers (c) and subsampling (s) layers

– Number of filters (feature maps) in each convolutional layer (fc1, fc2, . . . , fcc)

– Number of filters (feature maps) in each subsampling layer (fs1, fs2, . . . , fss)

– Number of hidden layers in the MLP classifier (h)

– Number of neurons in the input layer of the MLP (ni)

22

– Number of neurons in each of the hidden layers of the MLP classifier (nh1, nh2, . . . , nhh)

Currently, there are no strong mathematical foundations that link or rule these parameters

together. Researchers depend on exploring the parameter space in order to find the optimal

values and build the best CNN. Searching the parameter space can be carried out manually

or automatically. Nonetheless, we read huge body of literature for building CNN for several

object recognition problem [8, 9, 10, 22, 36, 37, 41, 42, 45, 51] We conclude from that the

following:

– The more the categories in the dataset, the bigger the network we need to build.

– It is safe to say at the worst case, the network capacity increases linearly as the number

of categories increases.

Based on the previous conclusion, we thought of how can we increase the network capacity

without increasing it’s size? Thus, we propose Hierarchical CNN (H-CNN). Hierarchical

approach has been used in different machine learning methods to reduce the complexity of

the problems with many classes to recognise, traffic sign detection and recognition is not

exception.

Ensemble methods share some characteristics with the architectural approach. For example,

boosting methods build a pipeline of classifiers. The problem complexity is reduced by

ruling out the weak candidates using week classifiers in beginning of the classifier pipleline.

While more complex classifiers are placed at the end to ensure more accurate classification

results. Thus, one can safely say that ensemble methods share some characteristics with the

architectural approach; depending on the basic and dominant visual features of the object for

early assessment/judgement. The only difference is that learning in the ensemble methods

is completely automatic. While in H-CNN there are decisions are made manually to lay out

the hierarchy.

Random forest is an example of ensemble methods. It is applied to traffic sign recognition.

Researchers J. Greenhalgh et al. [21] used random forest to achieve state-of-the-art results

for both detection and recognition. Figure

Also, in deep learning, hierarchical approach is utilised by the researchers Y. Zhicheng [48]

used hierarchical Deep CNN (HD-CNN) to solve the problem of large scale visual recog-

nition. They embedded the out-of-the-box CNN into a hierarchy based on the category of

the objects. An HD-CNN separates easy classes using a coarse category classifier. Later

23

Figure 3.1: The cascade of the classifiers used
to build the random forest, which is used to
classify traffic sign belongs to 100 classes. Re-
produced from [21].

on, the network distinguish difficult classes using fine category classifiers. It looks like this

approach is a hybrid of ensemble methods and deep learning methods. Figure

Figure 3.2: The layout of the HD-CNN. We notice the coarse-to-fine layers work as a cascade of
classifiers. It resembles boosting approach. Reproduced from [48].

Before presenting our method, there is one last contribution about hierarchical approaches

need to be discussed. Which is the work done by researchers R. Girshick el al. [18]. They a

3.1.1 Hierarchical CNN

Based on the previous introduction about the importance of architectural approach, how it

helps in reducing the complexity and how it has been applied before to different machine

learning methods, we present the C-NN for traffic sign recognition. Out approach depend-

ing of directly exploiting the main visual feature of traffic signs: the shape. The colour may

be considered as another dominant visual features for human. But it has proven less impor-

tance for the machine. Researchers [37] have done experiments using both grayscale and

coloured images (YUV). They reported very slight to no difference in performance. That’s

why we totally neglect the colour as a feature.

24

So, how do we exploit the shape of the traffic sign? We notice that the traffic signs are

shape-based, based on the super-class. Take for example the prohibitory: it is a circle with

white background and red circumference. Another example is the warning signs: they are

triangles with white background and red edges. So why don’t carry out the classifcation on

2 separate steps: First, classify all the traffic signs to their super-class. Second, classify each

super-class to their classes. Each step is considered as a classification problem by its own. It

can be solved by a out-of-the-box CNN. Figure

Figure 3.3: The layout of the proposed C-NN. In the first layer of the hierarchy (left), a traffic sign
is classified to its super-class. In the second layer (right), it is classified into its class.

The main building block of each classifier is out-of-the-box CNN. We have previously men-

tioned (in the beginning of this section) several parameters to build a successful CNN. Re-

searchers [] discussed and applying an automated to search for the optimal value of these

parameters in the parameter space. However, in our experiment, we used a typical CNN in

all the H-CNN. Figure

Before we start talking about the details of the network, let’s first discuss an important step

that has to be done before training the images. The step is image pre-processing.

3.1.2 Pre-Processing

We depend on images of traffic signs obtained from the GTSRB dataset [39]. The images

given in this dataset are coloured, in RGB. We do the following to the images:

25

Figure 3.4: The details of the CNN used typically to build the H-CNN. The parameters of the
network were chosen manually. Search for the optimal parameter values is done manually. Re-
produced from [17]

– Convert the image to grayscale. As we mentioned before, we took the decision neglect-

ing the colour as a feature.

– crop the images so the boundary of the image aligns with the boundary of the traffic

sign with in it. Luckily, we were given the ground-truth of these boundaries.

– Rescale the image to be squared (if needed).

– Resize all the images to be of the same length (28 pixels). We take the decision of

training the CNN with 28x28 input images.

Now, the images are ready for few more image processing steps. We call these steps: pre-

processing. They are as the following:

– Image Adjustment (Imadjust)

– Histogram Equalization (Histeq)

– Adaptive Histogram Equalization (Adapthisteq)

– Contrast Normalization (Conorm)

The reason behind pre-processing is to make the image invariance to brightness as possible.

Also, this helps in obtaining a well-distributed histogram. Eventually, extracting more robust

informative features from the training images. This step is equivalent to normalisation of

training data before using it in SVM or linear regression. Figure

Another step applied by other researchers in the same problem is to augment/jitter the

dataset [37, 8]. They argued that this step is helpful in obtaining more training samples out

of the original/given training samples, the GTSRB dataset. They said enriching the training

set helps in increasing the network capacity and results in better performance over the test

set. However, we didn’t augment the data for these reasons:

26

Figure 3.5: Effect of pre-processing on the
traffic sign image. This results in brightness
invariance.

– Enough training samples was given. On average, every super-class contains 300-500

training samples.

– Our goal is a proof-of-concept for the proposed CNN. We don’t aim to reach the state-

of-the art performance.

The last step before feeding the image to the CNN is normalisation. In order to achieve

smooth learning and prevent weight overshooting, we normalise the pixel values of the

image from [0 : 255] to [−1 : 1].

3.2 Traffic Sign Detection

We presented in the previous chapter

We reviewed a huge body of literature discussing the state-of-the-art object detection meth-

ods. We experimented the viability of applying some these methods to detecting traffic sign.

We concluded that one approach in particular can be further investigated. It seems viable.

This approach is called OverFeat [36]. In the following, we illustrate how this approach

works. Then we present how we apply it to the problem in hand; traffic sign detection.

3.2.1 OverFeat

CNN can be used for detection. It was applied in different problems, for example English

text detection in natural images [15, 45], Thai text detection [42]. The main approach

followed in these applications is sliding window. While it results is outstanding performance

and achieve state-of-the-art detection rates, it suffer from the problem of complexity. Having

to split the natural image into overlapping regions and doing this on different scales, results

in huge number of images to be processed by the CNN. Sliding window means we are using

brute force to explore the search space; which is the natural image.

27

To put this into context, let’s for example say that we want to detect an object (a traffic sign

for example) in a natural image of size 1380x800. Regardless of the size of the traffic size in

this image, we need to search the image at different levels (i.e. at different resolutions), let’s

say at 6-8 levels, with down-scaling factor of 0.5. Then if we consider a sliding window of

size 40x40 and stride 10, then we need to run the CNN over ∼ 12, 000 regions. While there

are some steps that can decrease the computation, still this is very high cost we have to pay

to do detection with CNN using sliding window.

That’s why OverFeat avoid exploring the search space with sliding window. So, how does

it work? A location of an object is determined by its boundary box, more precisely using 4

variables: x1, y1, x2, y2, where (x1, y1) is the top left corner of the boundary box and (x2, y2)

is its bottom right one. OverFeat deals with predicting the location as a regression problem.

We train a MLP classifier, in a regression fashion, to predict the location of a traffic sign

with-in a fixed-size region. Here are the steps of applying OverFeat to achieve prediction:

– A deep CNN is trained using the ILSVRC dataset, which contains millions of training

images classified into 1000 category. After training, this network would have learned

a strong, general-purpose feature extractor. Figure ?? shows some of the objects you

expect to find in the ILSVRC dataset.

– Another CNN is built. Its feature extraction part is not trained. However, its parameter

(weight w and bias b of the filters in convolutional and subsampling layers) is initialised

by the weights obtained from the CNN in the previous step. The classification part is

trained in a regression fashion to predict the location of the object in the images. The

target (the object location) is expressed as: x1, y1, x2, y2.

Overfeat has since proven success. It achieved state-of-the-art performance in ImageNet

Large Scale Visual Recognition Challenge 2013 (ILSVRC2013). Also, it was applied to solve

several detection problems. For example, Researchers et al. body joints detection in action

images [22].

3.2.2 Deep Learning for Traffic Sign Detection

After we have discussed OverFeat as, possibly, one of the best deep learning methods for

object detection, we decided to pursue it and apply it to our problem. However, there is an

important difference has to be taken into consideration:

28

Figure 3.6: The H-CNN we previously used
in traffic sign recognition. For detection, we
make use of the feature extraction part of each
superclass-specific CNN.

(a) Prohibitory signs (b) Warning signs

Figure 3.7: The steps to achieve detection, inspired by OverFeat [36]. (a) Initialise the feature
extractor part of the network with parameters from other previously trained CNN classifiers, and
we train the feature detector part (MLP) in regression fashion to predict the traffic sign location.
(b) We need to build a detection CNN for each super-class, where the CNN acts mainly as a shape
detector.

– Size of object: OverFeat was originally applied to ILSVRC competition where the goal

is to detect general objects in images. The fact is the size of these objects are usually

30-60% of the image itself. However in traffic sign detection, it is a usual case that the

size of the sign is about 5-15% of the image. Figure ?? shows example of typical image

from ILSVRC and another one for traffic sign.

Training Samples

We need to sample images for training. We are given the German Traffic Sign Detection

Benchmark (GTSDB) dataset. For a certain traffic sign in a certain natural image, we take

several samples where the traffic sign lies with-in the image sample. We do this for different

positions of the sign with-in the regions and for different scales. The resulted samples have

to be resized to 80x80 pixels to be convenient with our detection CNN. Figure

29

Figure 3.8: Sampling images for
detection. Samples are extracted
from GTSDB dataset. For a traffic
sign, we sample regions with dif-
ferent sizes and different locations.

So, how do we trained OverFeat in our case? The following are the steps:

– We build the detection CNN. Each super-class has a its won detection CNN. The feature

extraction part (convolutional and subsampling layers) will not be trained. It will be

initialised with parameters (weight w and bias b) previously obtained from recognition

CNN, as shown in figure

It is to be mentioned that all the sampled training images were subjected to pre-

processing. The same pre-processing we illustrated before in subsection

3.2.3 Experiments

The following are the experiments we carried out in order to apply OverFeat in traffic

sign detection and to refine this approach. This is the first time deep learning is applied

to traffic sign detection.

Sampling with True Positives and True Negatives

IN the first detection CNN we built, we trained it using samples of only true positive.

In other words, the network built a hypothesis to predict the location a traffic sign in a

specific region, but it was considering some background regions as traffic signs as well.

The result of such detector is shown in figure

Figure 3.9: Exam-
ples of true nega-
tives sampled from
the background of
GTSDB dataset.

We concluded that the network didn’t built a hypothesis about the background as it

was not trained with true negatives in the first place. So, we sampled true negatives (as

shown in figure

30

(a) CNN trained with true positives only.

(b) CNN trained with both true positives and true negatives.

Figure 3.10: Detector in action from higher to lower scale (left to right). On the top, result of the
CNN trained with only true positives. Despite the traffic sign is eventually detected, the detector
gives false positives for background regions. Red and yellow boxes mean high and low detection
confidence respectively. At the bottom, result of the CNN trained with both true positives and
true negatives. We can see clearly that the network rejected most of the background.

Detection Proposals

The main purpose of detection proposals is to overcome the complexity of searching.

Generally, traffic signs are confined in natural images, known for their big sizes. For

example, the image provided by GTSDB dataset are 1380x800 pixels.

So, how detection proposals work. They work as an initial guidance for the detector.

They try to find the regions of interests. In other words, the regions with high proba-

bility of finding traffic signs. Mainly, colour is considered as the dominant feature for

detection proposals. While it is known for it’s high invariance, researchers come up

with different ways to overcome this high variance.

In our case, we tried shape-based detection proposals. We used a robust circle detector

using Hough Transform. This helped us in reducing the search space, hence reducing

the complexity. Since it is circle detection, it was helpful for only mandatory and pro-

hibitory signs. However, we didn’t have the chance to build a robust triangle detector

for warning signs.

31

Chapter 4

Results

In the previous chapter

4.1 Traffic Sign Recognition

We presented the H-CNN in the hope to achieve large-scale traffic sign recognition,

where the real life is filled with thousands of different categories/classes. We argued

if we classify first to super-class then to class we will reduce the size of the network,

reduce training time, reduce the complexity of training and hence, be able to address

more classes. Table

Table 4.1: Comparison of the size of networks, between our method and the top-scoring methods
in GTSRB competition.

Method Network Architecture Size Input
Multi-Column CNN [8] 3 Conv [20, 40, 800] + 2 Hidden Layers * 8 CNN 40e6 48x48
Multi-Scale CNN [37] 2 Conv [104, 8640] + 2 Hidden Layers 05e6 32x32
H-CNN (our method) 2 Conv [20, 80] + 1 Hidden Layer [400] 0.75e6 28x28

Again, If there is any point we want to stress on, it would be reducing complexity. That

was our goal from the beginning. Arguably, we reached a good recognition perfor-

mance at a much lower cost. The following are the factors of comparison:

∗ The size of our network is much smaller.

∗ The number of parameters used in the network is much smaller.

∗ The number of convolutonal and subsampling layers.

∗ The number of hidden layers in the MLP classifier.

30

∗ The size of the input image.

To compare the performance of our approach against the top-scoring methods in GT-

SRB, we submitted the recognition result of our method to the GTSRB competition

website: Luckily, the submission is still open for benchmarking and research. We re-

port the result. Table

Table 4.2: Comparison of the overall performance (accuracy rates) between our method and the
top-scoring methods in GTSRB competition.

No. Method Score
1 2-stage HOG+SVM [49] 99.52%
2 Multi-Column CNN [8] 99.46%
3 Benchmark - Human Performance 98.84%
4 Multi-Scale CNN [37] 98.31%
5 Random Forests [50] 96.14%
6 H-CNN (our method) 94.89%

4.2 Traffic Sign Detection

In chapter

To further test this hypothesis, we did the following:

∗ Split the GTSRB to the 3 main super-classes: prohibitory, mandatory and warning,

as shown in figure

(a) Training images from GTSRB. (b) Test images from BelgiumTS.

Figure 4.1: Training a detection CNN with GTSRB dataset (left), then testing our hypothesis: will
it work as a shape detector? To test this hypothesis, we use test images from never-seen-before
classes. These images are taken from BelgiumTS dataset (right).

31

The reason we take images from the BelgiumTS, is that we wanted to test the

detection CNN using images from never-seen-before classes, i.e. classes that were

not statistically-represented in the training set. We wanted to test our hypothesis:

will the detection CNN work as a shape detector? After we did this experiment,

we got the following results, in table

Table 4.3: The detection rates of the 3 super-class detectors. The test is done using images from
never-seen-before classes.

CNN Detector Detection Rates
Prohibitory 67.4%
Mandatory 62.8%
Warning 72.6%

The conclusion is: we don’t have sufficient evidence that the network is primarily

and successfully working as a shape detector. The detection rates we achieved over

the test images are not sufficient to make a correct conclusion.

32

Chapter 5

Conclusion

In chapter

5.1 Future Work

The following point are the future work that can be conducted based on the work

done in this thesis. They can be considered as an extension to our work. While

initially planned to be covered, some of these points were not realized during the

time-frame of the project due to lack of experience and over-optimistic attitude.

5.1.1 Tracker

As we initially wanted to build a system to detect, recognise and locate traffic sign

in run-time, an essential part of the system is the tracker. It’s up to the tracker to

check the correctness of the results after detection and recognition. Also, tracker is

the component able to accurately calculate the position of the traffic sign as the car

moves and hence, precisely locate it on the map. Researcher has conducted further

investigation in this area [?].

5.1.2 Detection Using Deep Learning

This research area is novel. It has not been addressed yet by researchers. During

our project, we did a limited attempt to apply deep learning to detect traffic signs.

33

My personal judgement is that there is a huge potential for deep leaning and CNNs

if applied to this problem.

34

Appendix A

Implementation

Here, we mention some notes regarding the implementation of the project of this

thesis. The project is implemented using Python. It was developed used PyCharm

development environment. For deep learning, we used open-source libraries, listed

in table

Table A.1: Important Python libraries used in the project.

Library Function
Theano [3] Deep Learning and ConvNets
Lasagne Deep Learning and ConvNets
NoLearn Deep Learning and ConvNets
OpenCV [4, 5, 6] Computer Vision
Scikit-Image [43] Computer Vision
PIL Computer Vision

A.1 Source Code

The source code of the project was hosted on GitHub. You can find it here:

https://github.com/noureldien/TrafficSignRecognition. It’s completely open

for experimenting and research. Please feel free to use it without any permession.

A.2 Dataset

The project must be used along with the dataset. It is hosted locally and is not

available yet online. But a description will be added in the ReadMe file on the

34

https://github.com/noureldien/TrafficSignRecognition

GitHub project. It will contain all the details of how to get the data and how to use

it in the project, out of the box.

35

Bibliography

[1] Traffic sign assist. http://techcenter.mercedes-benz.com/en/traffic_

sign_assist/detail.html. Accessed: 26- Aug- 2015.
[2] Traffic sign detection - driver assistance system. http://www.ford.co.uk/

Cars/NewFocus/Driving-experience. Accessed: 26- Aug- 2015.
[3] Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, James Bergstra, Ian Good-

fellow, Arnaud Bergeron, Nicolas Bouchard, David Warde-Farley, and Yoshua
Bengio. Theano: new features and speed improvements. arXiv preprint
arXiv:1211.5590, 2012.

[4] Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, James Bergstra, Ian J.
Goodfellow, Arnaud Bergeron, Nicolas Bouchard, and Yoshua Bengio. Theano:
new features and speed improvements. Deep Learning and Unsupervised Fea-
ture Learning NIPS 2012 Workshop, 2012.

[5] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Raz-
van Pascanu, Guillaume Desjardins, Joseph Turian, David Warde-Farley, and
Yoshua Bengio. Theano: a CPU and GPU math expression compiler. In Pro-
ceedings of the Python for Scientific Computing Conference (SciPy), June 2010. Oral
Presentation.

[6] G. Bradski. Dr. Dobb’s Journal of Software Tools.
[7] Karla Brkic. An overview of traffic sign detection methods. Department of

Electronics, Microelectronics, Computer and Intelligent Systems Faculty of Electrical
Engineering and Computing Unska, 3:10000, 2010.

[8] Dan Cireşan, Ueli Meier, Jonathan Masci, and Jürgen Schmidhuber. Multi-
column deep neural network for traffic sign classification. Neural Networks,
32:333–338, 2012.

[9] Dan Cireşan and Jürgen Schmidhuber. Multi-column deep neural net-
works for offline handwritten chinese character classification. arXiv preprint
arXiv:1309.0261, 2013.

[10] Adam Coates, Blake Carpenter, Carl Case, Sanjeev Satheesh, Bipin Suresh,
Tao Wang, David J Wu, and Andrew Y Ng. Text detection and character
recognition in scene images with unsupervised feature learning. In Document
Analysis and Recognition (ICDAR), 2011 International Conference on, pages 440–
445. IEEE, 2011.

[11] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human
detection. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on, volume 1, pages 886–893. IEEE, 2005.

[12] UK Government Department of Transport. Know Your Traffic signs. 6th edition,
2007.

[13] Tim Dettmers. Understanding convolution in deep learning. http://

timdettmers.com/2015/03/26/convolution-deep-learning/, 2015. [Online;
accessed 19-July-2015].

[14] Piotr Dollár, Zhuowen Tu, Pietro Perona, and Serge Belongie. Integral channel
features. In BMVC, volume 2, page 5, 2009.

35

http://techcenter.mercedes-benz.com/en/traffic_sign_assist/detail.html
http://techcenter.mercedes-benz.com/en/traffic_sign_assist/detail.html
http://www.ford.co.uk/Cars/NewFocus/Driving-experience
http://www.ford.co.uk/Cars/NewFocus/Driving-experience
http://timdettmers.com/2015/03/26/convolution-deep-learning/
http://timdettmers.com/2015/03/26/convolution-deep-learning/

[15] Jonathan Fabrizio, Beatriz Marcotegui, and Matthieu Cord. Text detection in
street level images. Pattern Analysis and Applications, 16(4):519–533, 2013.

[16] Ivan Filkovic. Traffic sign localization and classification methods: An
overview. VISTA, Computer Vision Innovation for Safe Traffic, 2014.

[17] DL4J Deep Learning for Java. Convolutional networks. http://

deeplearning4j.org/convolutionalnets.html, 2015. [Online; accessed 19-
July-2015].

[18] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jagannath Malik. Rich fea-
ture hierarchies for accurate object detection and semantic segmentation. In
Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on, pages
580–587. IEEE, 2014.

[19] Gov.uk. Traffic-sign images - gov.uk. https://www.gov.uk/

traffic-sign-images, 2015. [Online; accessed 19-July-2015].
[20] Jack Greenhalgh and Majid Mirmehdi. Real-time detection and recognition

of road traffic signs. Intelligent Transportation Systems, IEEE Transactions on,
13(4):1498–1506, 2012.

[21] Jack Greenhalgh and Majid Mirmehdi. Traffic sign recognition using mser and
random forests. In Signal Processing Conference (EUSIPCO), 2012 Proceedings of
the 20th European, pages 1935–1939. IEEE, 2012.

[22] Thananop Kobchaisawat and Thanarat H Chalidabhongse. Thai text local-
ization in natural scene images using convolutional neural network. In Asia-
Pacific Signal and Information Processing Association, 2014 Annual Summit and
Conference (APSIPA), pages 1–7. IEEE, 2014.

[23] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[24] Yann LeCun, Corinna Cortes, and Christopher JC Burges. The mnist database
of handwritten digits, 1998.

[25] Béla Lipták. Artificial intelligence in process automation. http://www.

controlglobal.com/articles/2006/221/, 2008. [Online; accessed 19-July-
2015].

[26] Chunsheng Liu, Faliang Chang, and Zhenxue Chen. Rapid multiclass traf-
fic sign detection in high-resolution images. Intelligent Transportation Systems,
IEEE Transactions on, 15(6):2394–2403, 2014.

[27] Chunsheng Liu, Faliang Chang, Zhenxue Chen, and Shuang Li. Rapid traffic
sign detection and classification using categories-first-assigned treeâŃĘ. J.
Comput. Info. Syst, 9(18):7461–7468, 2013.

[28] Mayeul Mathias, Radu Timofte, Rodrigo Benenson, and Luc Van Gool. Traffic
sign recognitionâĂŤhow far are we from the solution? In Neural Networks
(IJCNN), The 2013 International Joint Conference on, pages 1–8. IEEE, 2013.

[29] United Nations. Vienna convention on road traffic (1968). https:

//treaties.un.org/Pages/ViewDetailsIII.aspx?src=TREATY&mtdsgno=

XI-B-19&chapter=11&Temp=mtdsg3&lang=en, 1968. Accessed: 15- Jul- 2015.
[30] OpenStreetMap.org. Road signs in belgium - openstreetmap wiki. http:

//wiki.openstreetmap.org/wiki/Road_signs_in_Belgium, 2015. [Online;
accessed 19-July-2015].

[31] Gary Overett and Lars Petersson. Large scale sign detection using hog feature
variants. In Intelligent Vehicles Symposium (IV), 2011 IEEE, pages 326–331. IEEE,
2011.

[32] Peretti. Perceptron layer. https://perceptronlayer.wordpress.com/, 2015.
[Online; accessed 19-July-2015].

36

http://deeplearning4j.org/convolutionalnets.html
http://deeplearning4j.org/convolutionalnets.html
https://www.gov.uk/traffic-sign-images
https://www.gov.uk/traffic-sign-images
http://www.controlglobal.com/articles/2006/221/
http://www.controlglobal.com/articles/2006/221/
https://treaties.un.org/Pages/ViewDetailsIII.aspx?src= TREATY&mtdsg no=XI-B-19&chapter=11&Temp=mtdsg3&lang=en
https://treaties.un.org/Pages/ViewDetailsIII.aspx?src= TREATY&mtdsg no=XI-B-19&chapter=11&Temp=mtdsg3&lang=en
https://treaties.un.org/Pages/ViewDetailsIII.aspx?src= TREATY&mtdsg no=XI-B-19&chapter=11&Temp=mtdsg3&lang=en
http://wiki.openstreetmap.org/wiki/Road_signs_in_Belgium
http://wiki.openstreetmap.org/wiki/Road_signs_in_Belgium
https://perceptronlayer.wordpress.com/

[33] K. Zimmermann R. Timofte and L.V. Gool. Multi-view traffic sign detection,
recognition, and 3d localisation. Machine Vision and Applications, 25(3):633–647,
2014.

[34] Ali S Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson.
Cnn features off-the-shelf: an astounding baseline for recognition. In Computer
Vision and Pattern Recognition Workshops (CVPRW), 2014 IEEE Conference on,
pages 512–519. IEEE, 2014.

[35] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
representations by back-propagating errors. Cognitive modeling, 5:3, 1988.

[36] Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Mathieu, Rob Fergus,
and Yann LeCun. Overfeat: Integrated recognition, localization and detection
using convolutional networks. arXiv preprint arXiv:1312.6229, 2013.

[37] Pierre Sermanet and Yann LeCun. Traffic sign recognition with multi-scale
convolutional networks. In Neural Networks (IJCNN), The 2011 International
Joint Conference on, pages 2809–2813. IEEE, 2011.

[38] S. Shafer and W. Whittaker. Development of an integrated mobile robot system
at cmu. 1989.

[39] Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. Man vs.
computer: Benchmarking machine learning algorithms for traffic sign recog-
nition. Neural networks, 32:323–332, 2012.

[40] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the
importance of initialization and momentum in deep learning. In Proceedings of
the 30th international conference on machine learning (ICML-13), pages 1139–1147,
2013.

[41] Yichuan Tang. Deep learning using linear support vector machines. arXiv
preprint arXiv:1306.0239, 2013.

[42] Jonathan Tompson, Ross Goroshin, Arjun Jain, Yann LeCun, and Christo-
pher Bregler. Efficient object localization using convolutional networks. arXiv
preprint arXiv:1411.4280, 2014.

[43] Stéfan van der Walt, Johannes L. Schönberger, Juan Nunez-Iglesias, François
Boulogne, Joshua D. Warner, Neil Yager, Emmanuelle Gouillart, Tony Yu, and
the scikit-image contributors. scikit-image: image processing in Python. PeerJ,
2:e453, 6 2014.

[44] Qian Wang, Jiaxing Zhang, Sen Song, and Zheng Zhang. Attentional neural
network: Feature selection using cognitive feedback. In Advances in Neural
Information Processing Systems, pages 2033–2041, 2014.

[45] Tao Wang, David J Wu, Andrew Coates, and Andrew Y Ng. End-to-end text
recognition with convolutional neural networks. In Pattern Recognition (ICPR),
2012 21st International Conference on, pages 3304–3308. IEEE, 2012.

[46] Wikipedia. Comparison of european road signs. https://en.wikipedia.org/
wiki/Comparison_of_European_road_signs, 2015. [Online; accessed 19-July-
2015].

[47] Yihui Wu, Yulong Liu, Jianmin Li, Huaping Liu, and Xiaolin Hu. Traffic sign
detection based on convolutional neural networks. In Neural Networks (IJCNN),
The 2013 International Joint Conference on, pages 1–7. IEEE, 2013.

[48] Zhicheng Yan, Vignesh Jagadeesh, Dennis DeCoste, Wei Di, and Robinson Pi-
ramuthu. Hd-cnn: Hierarchical deep convolutional neural network for image
classification. arXiv preprint arXiv:1410.0736, 2014.

[49] Yi Yang, Hengliang Luo, Huarong Xu, and Fuchao Wu. Towards real-time
traffic sign detection and classification. In Intelligent Transportation Systems
(ITSC), 2014 IEEE 17th International Conference on, pages 87–92. IEEE, 2014.

37

https://en.wikipedia.org/wiki/Comparison_of_European_road_signs
https://en.wikipedia.org/wiki/Comparison_of_European_road_signs

[50] Fatin Zaklouta, Bogdan Stanciulescu, and Omar Hamdoun. Traffic sign clas-
sification using kd trees and random forests. In Neural Networks (IJCNN), The
2011 International Joint Conference on, pages 2151–2155. IEEE, 2011.

[51] Yujun Zeng, Xin Xu, Yuqiang Fang, and Kun Zhao. Traffic sign recognition
using extreme learning classifier with deep convolutional features. In The
2015 international conference on intelligence science and big data engineering (IScIDE
2015), Suzhou, China, 2015.

38

	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Business Need
	1.1.1 Autonomous Cars
	1.1.2 Driver Assistance
	1.1.3 Traffic Signs on Maps

	1.2 Problem Definition
	1.2.1 Detection
	1.2.2 Recognition
	1.2.3 Tracking

	1.3 Traffic Signs Categories
	1.4 Research Datasets
	1.4.1 Detection Dataset
	1.4.2 Recognition Dataset

	1.5 Roadmap

	2 Related Work
	2.1 Traffic Sign Detection
	2.1.1 Sliding Window
	2.1.2 Detection Proposals
	2.1.3 Detection
	2.1.4 Haar-like Features
	2.1.5 Locale Binary Pattern
	2.1.6 Deep Learning
	2.1.7 Limitations and Challenges

	2.2 Traffic Sign Recognition
	2.2.1 Feature Engineering
	2.2.2 Convolutional Networks
	2.2.3 Limitation and Challenges

	3 Usage
	3.1 Options

	4 Usage
	4.1 Options

	5 Conclusion
	5.1 Future Work

	A Implementation Details
	A.1 Switching Formats
	A.2 Long Tables
	A.3 Booktabs
	A.4 Bibliography and Footnotes
	A.5 Figures and Tables

	B Printing and Binding
	B.1 Printing
	B.2 Binding

	Bibliography

