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Abstract
Temporal event localisation of natural language text queries is a novel
task in computer vision. Thus far, no consensus has been reached on
how to predict the temporal boundaries of action segments precisely.
While most attention in literature has been dedicated towards the rep-
resentation of vision, here we attempt to improve the representation
of language for event localisation by applying Graph Convolutions
(GraphSAGE) on ConceptNet with distributional node embedding
features. We argue that due to the large vocabulary size of language
and currently small temporally sentence annotated datasets in scale
and size, a high dependency is placed upon zero-shot performance.
We hypothesise that our approach leads to more visually centred and
structured language embeddings beneficial for this task. To test this,
we design a wide-scale zero-shot dataset based on ImageNet to opti-
mise our embeddings on and compare to other language embedding
methods. State-of-the-art results are obtained on 5/17 popular intrinsic
evaluation benchmarks, but with slightly lower performance on the
TACoS dataset. Due to the almost complete overlap in train- and test-
set vocabulary, we deem additional testing necessary on a dataset that
places more emphasis on word-relatedness; hypernyms, hyponyms
and synonyms, which arguably makes language representation learn-
ing difficult.
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1 Introduction
Forty-eight hours of videos are uploaded to Youtube every
minute with future-projections only indicating that the amount
of video footage created by consumers and companies in-
creases1,2. For many applications, including the search and 1 Fu et al. (2014)

2 Caba Heilbron et al. (2015)recommendation of content, it is necessary to understand what
occurs within this content. However, manually labelling and
transcribing these videos is for humans a time-intensive task
with limited possibilities towards speeding up this process.
Therefore, there is a high demand for methods that can auto-
matically search, annotate and recommend these videos for
the efficient retrieval of information. Any solution towards
this general problem description places a heavy reliance on
how visual cues (e.g. objects) correspond to their linguistic
counter-part (words). As of yet, no consensus has been reached
towards how such a suitable cross-modal embedding space
can be obtained that allows for matching textual descriptions
with video segments of variable size3,4. Although recently 3 Nguyen et al. (2017)

4 Xu et al. (2017)this particular research domain has gained increased traction
within the field of Computer Vision.

1.1 Improving Language Embeddings with
Event Localisation in Mind

In this work, an attempt is made to improve upon the represen-
tation of language specifically for the task of event-localisation
in videos given natural language text. Gao et al. (2017) recently
introduced a novel challenge called the Temporal Activity Lo-
calization via Language (TALL)-task in which the objective
is to localise any textual description in natural language text
within videos. Whereas current event-localisation approaches
attempt to localise only a small number of event-"classes" in
videos within a narrow domain, Gao et al. instead use natural
language text to represent a variety of events using word em-
beddings. The use of natural language changes the approach
from a relatively simple classification task to a regression prob-
lem in which significantly more emphasis is placed upon the
representation of language. Therefore in our work, we specifi-
cally focus on improving this representation of language for
event-localisation in videos.

To improve the representation of language for the particular
task of event-localisation, first hypotheses were formulated
about which properties of language embeddings were deemed
most relevant for matching textual events with vision (meaning:
≈feature representations of images). Subsequently, a novel
approach was designed to create language embeddings based
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on these properties. In an attempt to isolate whether these
properties indeed lead to the hypothesised improved task-
performance in event-localisation, additional experiments are
introduced to obtain a quantitative score to the extent these
properties were apparent in a multitude of different language
embeddings. Then we compare these scores for a variety of
embeddings, including our own, with their actual downstream
task performance to test whether these properties indeed lead
to improved performance. The remainder of this chapter is
intended to provide the reader with the additional background
needed to understand what lead to the formulation of our
approach, including; the difficulties of this particular task, our
most essential realisations that helped shape our hypotheses
and end with the research questions that we attempt to answer
in this work.

Current methods in video understanding mainly focus on
the representation of vision and simplify the representation
of language to only a select number of pre-defined classes5. 5 Gao et al. (2017)

Arguably, this task-design could be improved upon by allow-
ing natural language text to be used to not be limited to only
these select number of event categories. However, in order to
go from only a select number of target classes to using natu-
ral language text, numerous challenges arise. Whereas in the
former task design a complete overlap between the training-
and test-set class-categories exist, this is not the case when
natural language is used to represent events. With only lim-
ited visual-textual correspondences during training-time and
the vast vocabulary size of natural language text, it becomes
essential to relate the seen vocabulary during training to the
unseen vocabulary during test-time. This arguably makes this
problem close to a Generalised Zero-Shot Learning (GZSL)
problem-setting in which high performance is vital on both
seen and unseen vocabulary during the test-time. The objective,
therefore, becomes to transfer knowledge from the training-
to test-setting. De Boer et al. (2017) in their work focus on
the semantic reasoning in zero example video event retrieval
which is close to the former problem description. De Boer et al.
describe the absence of appropriate datasets as the primary
challenge with two properties of concepts mainly contributing
to this; the level of complexity and level of granularity concepts
can be described at.

The complexity of a concept refers to whether an event is
described on the low-level of objects, mid-level of basic actions
or high-level of complex sequences of movements. For example
on the object-level a description could be; Humans are kicking a
ball and try to score in each others goal, on the mid-level; People try
to outscore each other through passing and shooting, and high-level;
they play football. The granularity on the other hand, states
that Chihuahua is a more specific example of a dog. With the
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English vocabulary containing at least 171476 unique words6 6 source from oxforddictionaries

and the event-localisation datasets being relatively small which
span only a small subset of these words (e.g. 7,8), this arguably 7 Regneri et al. (2013)

8 Sigurdsson et al. (2016)places significant emphasis on how concepts or words in the
training-set relate to any word in the English vocabulary.

Another difficulty that arises when natural language text
is being used to represent language instead of a select few
action categories is the added uncertainty that comes when
matching vision with language. Whereas in event classification
the classes are assumed to be non-overlapping and binary, with
natural language text calculating the similarity between word-
vision correspondences is more difficult due to the increased
subjectivity. However, the added benefits of using natural
language text are that it can be potentially used to localise any
event that can be described in natural language text and also
less emphasis is placed upon on artificially created datasets
that consist of subjectively created event-classes that require
many training examples per class.

In the work of Gao et al. (2017) that formally introduced
the TALL-task, the most emphasis was placed upon obtaining
a suitable model to learn a cross-modal embedding space in
which language can be accurately matched with parts of a
video. The two modalities, represented by language and vision
respectively, are represented by general purpose language em-
beddings obtained using Distributed Semantic Models (DSMs),
e.g. word2vec or Skip-Thought, and visual features extracted
from pre-trained Convolutional Neural Networks (CNNs) re-
spectively. We refer to the space in which both modalities
can be matched as the cross-modal embedding space which is
learned by a parameterised model. In this semantic space, the
distance between both feature-representations should ideally
reflect how semantically similar both representations are.

To improve the representation of language and facilitate
the alignment between vision and language for this cross-
modal embedding space, a novel approach is designed here
that relies upon a Graph Convolutional Network (GCN) being
applied on a Knowledge Base (KB) combined with DSM node
feature-representations. Due to the large vocabulary size of
language and limited visual-language correspondences in cur-
rent training-sets, the problem is formulated as a missing-data
problem in which there is a heavy dependency placed upon
GZSL. To perform well in this task-setting, high performance
is necessary on both seen classes during training and unseen
classes during testing. Which in our problem-setting loosely
corresponds with (un)seen words and visual examples.

In order to accurately match vision with text for event-
localisation in videos, we hypothesise that more structured
language embeddings are required than current DSMs provide.
The additional structure could enhance the knowledge trans-
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fer from seen to unseen words in the cross-modal embedding
space. Also within the specific domain of event-localisation or
recognition, language embeddings that more prominently fea-
ture visually grounded relations between the words in the vo-
cabulary were deemed beneficial for subsequent matching with
vision. Leading up to our approach, first a literature study was
conducted to identify the most recent developments and en-
countered problems within the domain of video-understanding.
Second, based on this literature overview, a literature-gap was
identified leading up to our approach. The two main problems
that were identified using DSMs for event-localisation given
natural language text are now described in more detail.

First, DSMs approaches9 learn the relations between words 9 e.g. Word2Vec (Mikolov et al. (2013a)), GloVe (Pen-
nington et al. (2014)), LexVec (Salle et al. (2016))using the distributional hypothesis on large text corpora coming

from a different domain than the visually centred textual de-
scriptions as can be seen in event-localisation. Arguably this
leads to sub-optimal word-representations for this task. The
distributional hypothesis states that the linguistic items used in
similar context have a similar meaning. Considering the data
sources that these models are trained on, e.g. Wikipedia, the
resulting embeddings are expected to encapsulate relationships
that are more centred around the historical context of events
in contrast to the more visually grounded relationships used
to describe events in videos. For example, to match the textual
query a spinning top on the table it is useful to have language
embeddings that more prominently features the functional
relationship that a top can spin in order to match it with the
visual motion of spinning. In contrast, current DSM approaches
rely on data sources such as Wikipedia which focus more on
historical context of entities and objects, e.g. Barack Hussein
Obama II, is an American politician who served as the 44th President
of the United States10. KBs such as ConceptNet, however, are 10 Sentence taken from the

Wikipedia page of Barack Obama
https://en.wikipedia.org/wiki/Barack_Obama

centred around objects and their functionality, which could
potentially be used as an alternative method towards obtaining
language embeddings that more prominently feature visually
centred relations in them.

Second, to allow the accurate matching of any linguistic
description with vision arguably a significant dependency is
placed upon how one can relate the known vocabulary dur-
ing training to the unknown vocabulary during testing. This
arguably makes this problem closely related to the GZSL task-
setting. In contrast to Zero-Shot Learning (ZSL) which only
considers the model’s performance on unseen classes dur-
ing testing, in GZSL approaches also the performance on the
classes already seen during training is taken into account. For
our purpose, these (unseen) classes loosely correspond with
the vocabulary on the language-side with matching visual rep-
resentations on the vision-side. As the same image or video can
be described in an almost infinite number of ways using dif-
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ferent words with emphasis on different visual cues and level
of complexity, the amount of visual-textual correspondences
during training time can always be considered only a small
fraction of the total amount of possible descriptions. Therefore,
a large part of the challenge of finding a cross-modal embed-
ding space can be considered an alignment issue in which the
relationships learned during training-time between the vision
and language modality need to be able to generalise to a high
extent to unseen visual-imagery and textual-descriptions dur-
ing testing. For this reason, an attempt was made towards
optimising language embeddings specifically for better zero-
shot performance when used in a cross-modal embedding
space setting with vision. The structure of a KB in contrast
to DSM approaches was expected to lead to more structured
language embeddings and therefore better suited to transfer
knowledge to unseen words in the cross-modal embedding
space.

Inherently, in order to match language and vision in a cross-
modal embedding-space, it can be beneficial to understand
how we as humans use language to describe the visual world.
In the following section, this is explored and further illus-
trates how the usage of a KB can help towards revolving the
aforementioned two problems.

1.2 Language and the Relation to the Phys-
ical World

The question can be posed, what exactly is the relationship be-
tween language and vision? Arguably, language has evolved to
describe our surroundings in a simplified abstract way that al-
lowed people to effectively communicate ideas and refer to the
same visual surroundings in the real world. Therefore, there
must exist a commonly shared latent representation between
people; an abstraction of the physical world, that is tapped
into by communicating through language. In this condensed
representation, some objects or events are intuitively closer to
us. For example we find that women and child are more similar
or closer to each other than child and make-up.

A possible explanation for our intuition that some concepts
are closer together than others is the clustering of these objects
in the real physical world. To encode the world in a latent ab-
stract representation with limited capacity, a possible analogy
of the storage device which is our brain, clustering of visual
representations could potentially be an efficient and practical
solution. As make-up is visually more frequently seen near
females, while for example a banana is not, it also makes sense
to cluster these concept abstractions closer together as they
are observed in a similar context. Many intrinsic evaluation
benchmarks have been designed to try to capture this perceived
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similarity between words by humans, which subsequently have
been used to test whether the language embeddings trained
by parameterised models exhibit the same similarities between
words as a measurement of their quality. Popular similarity
based tasks include MEN11, MTURK12 and WS13. 11 Bruni et al. (2014)

12 Radinsky et al. (2011)
13 Agirre et al. (2009)

In particular, the highly structural formation of words that
make up language, with it is many; hypernyms, hyponyms,
antonyms, synonyms and other types of relations, could pro-
vide a peek into the underlying structure the outside world is
encoded in within our brain. This representation could allow
for more efficient encoding of concepts, such that concepts that
visually appear closer together in the real world also appear
closer together within this language hierarchy. For example a
cat is a pet, and a pet is owned by a human, could possibly be
seen as an indication that the concepts of humans and cat also
co-occur closely together in the physical world.

So how can this view upon language as a way to describe a
latent representation of a hierarchical abstraction of the world
help in modelling textual and visual similarity for the task
of event-localisation in videos? Given that this hierarchy is
known, this eases the subsequent matching of vision and lan-
guage when only limited visual-and-textual correspondences
are available during training time. This hierarchy allows
for transferring knowledge from the known concepts during
training-time to previously unseen concepts in test-time. Of
course, this hierarchy is unknown in practice, but arguably
knowledge bases such as WordNet and ConceptNet already
attempt to make these semantic clusters in language concrete
by introducing a set of ternary relations <subject, relation, ob-
ject>. An example of a sub-graph of these relationships in
ConceptNet is shown in Figure 1.1.

Figure 1.1: ConceptNet subgraph. Relations be-
tween concepts are shown by arrows and are direc-
tional. The text above or below the arrows demon-
strate the relationship type (e.g. UsedFor, AtLoca-
tion). Relational data from ConceptNet as shown
here can potentially be combined with semantic
node embedding features to obtain better language
embeddings for event-localisation. Figure repro-
duced from Speer and Havasi (2013).

The hierarchy that is contained within these KBs could po-
tentially be harnessed as an alternative way to obtain language
embeddings. Whereas in DSM approaches there is limited
control over which relationships are being learned resulting

12



in general purpose word-embeddings, using only a selection
of a KB like ConceptNet could potentially allow for more con-
trol over which relationships are being learned to specifically
gather towards a task of interest. For example, one could only
select specific relationships that are deemed useful for event-
localisation purposes. In Figure 1.1 an example is shown of the
relations between concepts in ConceptNet that could be used
for such a selection.

Another limitation of DSM approaches is that they rely
on large quantities of data in which words that are more fre-
quently appearing in the same context are considered more
semantically similar. However, intuitively repeating the same
sentence does not make the words within the sentence more
similar to us. Nonetheless, DSM approaches are due to its
distributional hypothesis vulnerable to this frequency bias. An
implication of this is that for example a man is more associated
with the word boss while female is more associated with the
word cooking, an undesirable property for many practical ap-
plications14. By using relational knowledge from KBs to obtain 14 Speer (2017)

these embeddings, the frequency in which these relationships
appear in written-text can be partially neglected (explain in
more detail in Section 1.3). However, it is important to note
that even the hierarchical structure of KBs are still subjected to
our own biases and therefore not completely without biases.

MEN-3000 Rare Words MTurk-771 WS-353 SE 2017-2a
intrinsic evaluation task
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(b) Word embedding bias comparisons. Lower is better.
Figure 1.2: Comparison between popular language
embedding methods on intrinsic evaluation bench-
marks and bias-metrics. Figure reproduced from
here. In intrinsic evaluation tasks the similarity
between word-pairs is calculated based on human
judgment and is then compared to the similarity
these word-pairs have in the language-embeddings
as a measurement for success.

1.3 Our Approach
Speer and Lowry-Duda (2017) recently showed the success of
combining relational knowledge found in knowledge bases
such as ConceptNet, with distributional word embeddings to
obtain improved word embeddings using a technique called
retrofitting15. In their work specific focus was dedicated to 15 Faruqui, M., Dodge, J., Jauhar, S. K., Dyer, C.,

Hovy, E., and Smith, N. A. (2014). Retrofitting
word vectors to semantic lexicons. arXiv preprint
arXiv:1411.4166

decreasing the effect of a variety of biases that are apparent
in DSM while improving the state-of-the-art (SOTA) in many
of the intrinsic evaluation benchmarks. This resulted in lan-
guage embeddings called Numberbatch of which the results
can be seen in Figure 1.2 which shows promising signs that
relational knowledge from ConceptNet can be used to improve
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the quality of general purpose language embeddings.
Recently also a new type of algorithms have been introduced

that could combine relational knowledge and distributional
semantics; GCNs. In specific, the work of Hamilton et al.
(2017) that introduced the Graph Convolutions (GC)-based
method GraphSAGE, that allows learning node-embedding
feature representations for each node in large-scale graphs in
an unsupervised fashion and in an inductive setting (for a more
in-depth explanation see Section 3.3). The representation of
each node is dependent upon the node’s local neighbourhood
while distant nodes are enforced to be dissimilar. In addition,
Hamilton et al. propose a variety of learn-able aggregator
functions to combine this local neighbourhood information
of each node while allowing each node in the graph to have
an additional n-dimensional feature vector. To the best of our
knowledge, this method has not been applied on a KB yet in
an attempt to obtain language embeddings.

In this work, we further explore the possibility of combining
relational knowledge with distributional semantics specifically
to obtain improved language representations for event locali-
sation given natural language text in videos. By applying the
recently popularised neural network architecture; GCNs on
a specific sub-selection of ConceptNet to which node-feature
representations are added from popular DSM approaches, it
is expected that more structured language embeddings are
obtained. This additional structure is hypothesised to result
in improved generalisation in a GZSL task-setting when com-
pared to current language embeddings obtained using DSM
approaches. In addition, the object centred focus of Concep-
Net in which many of the relationships are visually grounded
is expected to improve the alignment with visual-features to
obtain a cross-modal embedding space.

This new approach towards obtaining language representa-
tion adds additional challenges including; the question whether
Graph Convolutions can successfully be applied to the domain
of ConceptNet under our task-settings, how to correct the
mismatch between the vocabulary of ConceptNet and DSM
methods to add appropriate node-embedding features, and
how to evaluate whether the resulting language embeddings
(1) contain the desired properties we hypothesized and (2)
whether this lead to actual task improvements.

1.4 Research Questions
The following research questions were specifically attempted
to be answered in this work;

• RQ1 Are language embeddings that are obtained by com-
bining both distributional semantics and relational knowl-
edge, better able to be aligned with the visual-features

14



for zero-shot purposes than using distributional semantics
alone?

• RQ2 How can a wide-scale GZSL evaluation dataset be de-
signed that covers the broad nature of events in videos and
allows comparing different language embedding methods
in their ability to be matched with visual-features given a
GZSL task-setting?

• RQ3 Is a higher zero-shot performance on the evaluation
dataset obtained in RQ2 actually indicative of increased task
performance in event-localisation in videos given natural
language text?

1.5 Hypotheses
• H1 For event-localisation in a video given natural lan-

guage text the large vocabulary size of language with the
many hypernyms, synonyms and other relationships be-
tween individual words, require more structured language
embeddings than current DSM provide in order to improve
the transfer of knowledge from seen to unseen vocabulary
similar to a GZSL task setting.

• H2 For the matching between visual-features and language-
embeddings in a cross-modal embedding setting, it is benefi-
cial if the relationships that the language embeddings entail
are more visually grounded.

1.6 Contributions
The contributions of this work include the following;

1. To the best of our knowledge, we are the first to apply graph
convolutions on ConceptNet with node feature representa-
tions taken from distributional word-embedding approaches
as an alternative way to obtain language embeddings.

2. The obtained language representation show competitive
results on 14 of the 17 used intrinsic evaluation methods
while reaching SOTA in the metrics AP, BLESS, ESSLI_1A,
ESSLI_2C and RW.

3. Our language embeddings obtain similar but slightly lower
performance than the current SOTA in the TALL-task16 sub- 16 Gao et al. (2017)

stituting only the language representation the approach of
Gao et al. (2017). Further inspection showed that for this
task still high performance could be obtained when words
were represented using a 1-hot encoding rather than lower
dimensional word-embeddings. This demonstrates that for
this task there is limited reliance upon the transfer of knowl-
edge between the train- and test-set vocabulary. We argue
that due to the limited visual-textual correspondences in
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current event-localisation datasets and the nature of this
problem, this is not a realistic evaluation-setting. Therefore
for the evaluation of this task, we deem the introduction
of a novel dataset necessary which places more emphasis
on the transfer of knowledge by containing more vocabu-
lary variety and less overlap between the train- and test-set
vocabulary.

1.7 Outline
The remainder of this work is broken up in the following
sections. In the Background Section (2) the TALL-task is intro-
duced, an overview is provided towards the problems that are
discussed in literature when learning a language and visual
representation and lastly a comparison is made between GCs
and retrofitting as a technique to combine relational knowl-
edge with distributional semantics. This chapter is intended to
give the reader a basic understanding of the topic. In Related
Work (3) a detailed explanation is given of the used TALL- and
GraphSAGE model-architecture that was used to obtain our
results as well as the evaluation methods of word-embeddings
and zero-shot learning approaches. Thereafter in Methods (4)
the TALL-task is formalised, and an overview is provided into
the three experiments conducted in this work in an attempt
to answer the research questions posed in the Introduction
(1.4). In Experimental setup (5), the challenges that were faced
are addressed. Including the creation of a suitable zero-shot
dataset to evaluate to which extend language embeddings are
suited to be aligned with visual-features in a GZSL setting
(5.1.1), the challenges faced when obtaining language embed-
dings using our given approach (5.2) and how to go from
word-embeddings to the down-stream task performance (5.3).
An overview of the Results (6) is then provided after which a
Discussion (7) follows that questions or give strength to our
methodology were appropriate. Lastly, we Conclude (8) with a
summarisation of our key findings and recommendations for
future work.

1.8 Experiments and Relation to the Research
Questions

RQ1 is attempted to be answered in Experiment III (4.5) where
we compare our obtained language embeddings in the evalua-
tion setup as formulated by Gao et al. (2017) on the TALL-task
to test whether our hypothesis (1.5) indeed resulted in im-
proved task-performance. As in our hypothesis we argued
that for the TALL-task the transfer of knowledge from seen to
unseen vocabulary is important and more visually grounded
language embeddings are beneficial, we conduct two small ex-
periments to test whether this is indeed true. To test the former,
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in Section 5.3.6 we replace the vocabulary to a 1-hot encoding
of words to minimise the reliance upon knowledge transfer and
measure the performance on the TALL-task. As the TALL-task
was formulated as a direct response to the critique that current
methods represent language as a simple 1-hot encoding of only
a select few event-classes, a suitable task-evaluation method
would place emphasis upon word-relatedness rather than the
direct matching of classes (or words). Therefore representing a
1-hot encoding of words was expected to result in a relatively
low performance given a suitable task-evaluation setup.

Next, to test whether our embeddings featured relation-
ships that had visual correspondences, in Section 5.1.5 we
conduct an experiment using the Flickr30k dataset. By POS-
tagging the sentences in the Flickr30k dataset and ranking the
word-image similarity scores of dissimilar and similar pairs
given a trained cross-modal embedding space, it was expected
that a more qualitative comparison could be made between
language embeddings and their ability to be aligned with
visual-features (5.1.5). However, as the obtained cross-modal
embedding space as obtained in Experiment II (4.4) was unable
to accurately match word-image pairs on the Flickr30k dataset,
any further analysis was not considered meaningful. Therefore,
this question remains unanswered and only for completeness
this experiment is shortly discussed.

For RQ2 we design Experiment II (4.4) where we explore
whether the hierarchical structure of ImageNet can be used
to create a zero-shot evaluation benchmark with the objective
of testing general zero-shot performance. Finally to answer
RQ3 and observe whether increased zero-shot performance
also leads to increased TALL-task performance we compare
the results we obtained using the dataset obtained in RQ2 with
the task-performance obtained during answering RQ.
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2 Background
Prior to the formulation of the research direction as mentioned
in the Introduction (1), an extensive literature study was con-
ducted in an attempt to provide an overview of the identified
problems within the domain of event-recognition and localisa-
tion. Based on these findings a literature-gap was identified
that revolved around obtaining an improved representation
of language as current literature greatly simplifies the use
of language to a simple classification task or rely on general
purpose word-embeddings obtained by DSM methods. The
findings from this literature study and the preliminary back-
ground needed to understand our approach, are discussed in
this chapter.

First a more formal introduction of the TALL-task is given in
Section 2.1. Subsequently in Section 2.2 three major difficulties
deemed most important for obtaining an accurate representa-
tion of vision in video-understanding are discussed. Thereafter
in Section 2.3 a more in-depth overview is provided towards
the challenges revolved around obtaining an accurate represen-
tation of language for event-localisation or action classification.
Our final remarks and sub-conclusions regarding these find-
ings are then summarised in Section 2.4 which were used as a
starting point for our approach. Lastly, as our approach shares
similarities between the retrofitting technique that was used
to obtain the Numberbatch word-embeddings leading to the
current SOTA in language embeddings, Section 2.5 is used to
point out the most important differences.

2.1 The TALL Task
Gao et al. (2017) formalise the challenge of finding exact tempo-
ral boundaries in untrimmed videos of free-form text queries
as the TALL-task. In contrast to trimmed videos which are
used for video-classification (also called event recognition) with
only one target label per video, in untrimmed videos only a
segment of the video corresponds to the textual description of
the event. Event-localisation can, therefore, be seen as a task
where first it is required to find where an event occurs after
which there has to be determined what it is about. Different
from the traditional action localisation task, the TALL-task
describes what it is about in natural language text without
any self-imposed structure (free-form) instead of a select list
of pre-defined actions or events, therefore putting increased
emphasis on the representation of language. From now on the
terms events and actions will be used interchangeably to refer
to a textual description with clear visual correspondences that
can be localised in videos.
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In a video multiple and sometimes even overlapping events
can occur with a significant part of the video not being specifi-
cally gathered towards any particular action. Therefore one of
the most challenging tasks of event-localisation in untrimmed
videos is being able to separate the most salient part of an event
from the rest of the video1. Whereas in a classification task 1 Nguyen et al. (2017)

there is relatively little ambiguity about the correct class from
the select and pre-defined list of classes, the exact temporal
boundaries of an event are often subjective and therefore de-
batable. With the introduction of the TALL-task the field of
Computer Vision (CV) has progressed from the classification
of objects to entire videos, and the localisation of actions in
untrimmed videos given a pre-defined list of action-classes to
also freeing up on this final constraint. Arguably, this brings us
one step closer for these methods to be applied in real-world
applications that require a search in videos in our own natural
language.

V

T "Go to the scene with the spinning top"

1

2

t_start t_stop

Figure 2.1: The aim in the TALL-task is to find the
temporal boundaries of an event described by a
textual description T in video V. (1) A cross-modal
embedding space is learned that should give high
activation for corresponding V and T. (2) Thereafter
a segment proposal network is trained that learns
based on the activation output of step (1) to predict
the temporal boundaries t_start and t_stop of the
event described by T.

Gao et al. (2017) subdivide the TALL-task in two separate
steps. First, (1) the design of a text and video representation
that allows for creating a joint-representation of language and
vision in which the similarity of the two can be measured.
We refer to this as the cross-modal embedding space. Second, (2)
the ability to accurately locate the actions using the similarity
scores obtained from the cross-modal embedding space using
sliding window based approaches of limited granularity to
account for actions of variable length. How these tasks are
dependent upon each other is shown in Figure 2.1. Inherently,
(2) is dependent upon the feature representation obtained in
(1) which therefore propagates potential sub-optimal language
or vision representations further down the model. Gao et al.
focus mostly on obtaining an appropriate model for (2) while
simplifying the language and vision representation by extract-
ing features from models trained separately, Skip-Thought and
Inception-V1, on different tasks to base their cross-modal em-
bedding on (1). Therefore first an effort was made towards
providing a literature overview of the current difficulties in
finding an appropriate video and language representation.
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2.2 Video Representation - Modeling Diffi-
culties

Finding a suitable representation of vision is frequently brought
up as one of the most challenging tasks for accurate action
localisation. Concerns in literature are frequently described as
the lack of (1) suitable spatiotemporal video representation for
accurately capturing the large intra-video variation, (2) suit-
able datasets for this task and (3) the computational efficiency
in which this is obtained (Figure 2.2). These are now further
discussed.

Datasets

Spatio-Temporal
Representation

Efficiency

Figure 2.2: A simplified overview of three identi-
fied problem-areas of event-localisation in literature.
Current approaches can be roughly divided along
these three dimensions; Upper center: finding a suit-
able visual representation. Bottom left: the com-
putational efficiency in which the localisation and
classification of action occurs. Bottom right: finding
datasets suitable for event-localisation in both size
and variety to accomplish this task. The axis are to
a certain extend dependend upon each other.

2.2.1 Spatio-Temporal Video Representation

Dai et al. (2017) describe that although the localisation of ob-
jects in images has been widely studied, localisation of activi-
ties in videos has received less attention. The primary reasons
Dai et al. accredit to this are the increased computational cost
associated with working within the video domain combined
with the lack of large annotated datasets. Yuan et al. (2016)
specifically mention the difficulty of representing time to al-
low to capture events of arbitrary length. Yang et al. (2018)
describe that the task of how to accurately perform temporal
action localisation is still an open question, while Nguyen et al.
(2017) argue that the lack of appropriate methods to obtain
suitable video representations is the main challenge in action
localisation.

Xu et al. (2017) stress the necessity of extracting meaningful
spatiotemporal features to accurately localise the start and end
times of each activity. Current approaches have the drawbacks
that they do not learn deep representations in an end-to-end
fashion, but instead rely on hand-crafted features or deep fea-
tures extracted from CNNs trained on a different task. Xu
et al. argue that these off-the-shelf representations may not
be optimal for action localisation because of the tremendous
diversity of videos. The vast diversity seen in videos according
to Caba Heilbron et al. (2016) comes from the considerable
variation in motion, scenes, and objects involved, styles of exe-
cution, camera viewpoints, camera motion, background clutter
and occlusions. This makes learning general discriminative
features for videos for a wide variety of domains difficult.

What makes videos different from images is the large spa-
tiotemporal correlation found between consecutive frames.
These correlations can be captured by complex motion features
for the tasks of the localisation or classification of actions, ei-
ther by using CNNs trained on videos using 3D filters or static
approaches. Static approaches, such as TV − L1 and dense-
trajectory estimation, in contrast to CNN based approaches,
are not optimised on a specific dataset and target domain. In-
stead, they focus on separating object motion from camera
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motion estimation using for example homography estimation2, 2 Wang and Schmid (2013)

the tracking of SURF-descriptors across frames or variational
methods to obtain optical flow estimations.

C3D and the more recently introduced I3D are popular
CNN based methods to encapsulate motion and visual fea-
tures in one joint representation. In these approaches, a vi-
sual feature map is generated containing a representation of
multiple frames at once. As these methods take up some-
where between 0.4 to 2.56 seconds of visual input at a time3, 3 Carreira and Zisserman (2017)

finding an accurate frame-level prediction of event bound-
aries for action localisation is therefore difficult using these
approaches. Potential solutions for this particular problem
have been proposed by for example Yang et al. (2017) that use
Convolutional-Deconvolutional-Convolutional filters to allow
for more accurate frame-level predictions.

The use of 3D filters in methods such as C3D and I3D come
at the cost of increased model complexity which increases the
risk of over-fitting. Recently, Carreira and Zisserman (2017)
introduced their SOTA I3D model on video classification bench-
marks which is based on the older Inception-V1 architecture
that focused on computational efficiency allowing for increased
depth and width of the model’s architecture. By inflating the
2D filters pre-trained on Imagenet into the temporal dimension
as a smart initialisation method, improved training-time, and
classification accuracy was obtained due to decreased over-
fitting possibilities.

Xie et al. (2017) further improved upon the I3D architecture
by using temporally separable convolutions, introduced spa-
tiotemporal gating mechanisms with additional spatial- and
temporal-pooling. By shifting the temporal depth from the
bottom-layers to the top-layers, the required number of param-
eters were reduced and the performance increased. Despite
these efforts towards reducing model complexity, both mod-
els still were trained using respectively 64 and 56 GPUs with
synchronous stochastic gradient descent on the largest video
classification dataset at the time; Kinetics, in order to com-
bat over-fitting. Training on a large dataset can be seen as
an additional form of regularisation by decreasing the influ-
ence of each data-point. While the large amount of GPUs is
necessary to compensate for the increased memory require-
ments of one training example due to the temporal dimension
(n-consecutive input frames) and increased model size when
compared to CNNs that take in only a single image (3D filters).

For many video-related tasks, e.g. the localisation and clas-
sification of actions, features are extracted from SOTA video
classification models. The architecture of these models can
be roughly divided into five popular model architectures as
displayed in Figure 2.5. Depending on the architecture type,
inputs of the model either allow the use of one or multiple
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Figure 2. Video architectures considered in this paper. K stands for the total number of frames in a video, whereas N stands for a subset of
neighboring frames of the video.

this makes them harder to train. Also, they seem to preclude
the benefits of ImageNet pre-training, and consequently
previous work has defined relatively shallow custom archi-
tectures and trained them from scratch [14, 15, 28, 29]. Re-
sults on benchmarks have shown promise but have not been
competitive with state-of-the-art, making this type of mod-
els a good candidate for evaluation on our larger dataset.

For this paper we implemented a small variation of C3D
[29], which has 8 convolutional layers, 5 pooling layers and
2 fully connected layers at the top. The inputs to the model
are short 16-frame clips with 112 × 112-pixel crops as in
the original implementation. Differently from [29] we used
batch normalization after all convolutional and fully con-
nected layers. Another difference to the original model is
in the first pooling layer, we use a temporal stride of 2 in-
stead of 1, which reduces the memory footprint and allows
for bigger batches – this was important for batch normal-
ization (especially after the fully connected layers, where
there is no weight tying). Using this stride we were able to
train with 15 videos per batch per GPU using standard K40
GPUs.

2.3. The Old III: Two-Stream Networks

LSTMs on features from the last layers of ConvNets can
model high-level variation, but may not be able to capture
fine low-level motion which is critical in many cases. It is
also expensive to train as it requires unrolling the network
through multiple frames for backpropagation-through-time.

A different, very practical approach, introduced by Si-
monyan and Zisserman [25], models short temporal snap-
shots of videos by averaging the predictions from a single
RGB frame and a stack of 10 externally computed optical

flow frames, after passing them through two replicas of an
ImageNet pre-trained ConvNet. The flow stream has an
adapted input convolutional layer with twice as many input
channels as flow frames (because flow has two channels,
horizontal and vertical), and at test time multiple snapshots
are sampled from the video and the action prediction is av-
eraged. This was shown to get very high performance on
existing benchmarks, while being very efficient to train and
test.

A recent extension [8] fuses the spatial and flow streams
after the last network convolutional layer, showing some
improvement on HMDB while requiring less test time aug-
mentation (snapshot sampling). Our implementation fol-
lows this paper approximately using Inception-V1. The in-
puts to the network are 5 consecutive RGB frames sam-
pled 10 frames apart, as well as the corresponding optical
flow snippets. The spatial and motion features before the
last average pooling layer of Inception-V1 (5 × 7 × 7 fea-
ture grids, corresponding to time, x and y dimensions) are
passed through a 3× 3× 3 3D convolutional layer with 512
output channels, followed by a 3 × 3 × 3 3D max-pooling
layer and through a final fully connected layer. The weights
of these new layers are initialized with Gaussian noise.

Both models, the original two-stream and the 3D fused
version, are trained end-to-end (including the two-stream
averaging process in the original model).

2.4. The New: Two-Stream Inflated 3D ConvNets

With this architecture, we show how 3D ConvNets can
benefit from ImageNet 2D ConvNet designs and, option-
ally, from their learned parameters. We also adopt a two-
stream configuration here – it will be shown in section 4

Figure 2.3: Popular architectures for learning vi-
sual video representations that include motion. The
models input differ in their representation of time,
e.g. on the frame-level (a,c,d) vs. multiple frames
(b,e), without (a,b) or with additional motion infor-
mation (c,d,e). The model architectures also differ
in the moment motion information is aggregated,
e.g. late (c) vs early fusion (a). Motion patterns
can be learned using 3D filters (b,d,e) or 2D ap-
proaches (a,c). Figure reproduced from Carreira
and Zisserman (2017).

images with or without the addition of optical flow estimations
between these frames. Optical flow takes the displacements of
intensity patterns into account and therefore can be seen as a
background masker in which the moving parts of the image
are separated from the stationary background. Also, frequently
an attempt is made to distinguish camera motion from object
motion, which is especially useful to detect motion patterns.
Popular optical flow estimation methods are TV-L1

4,5,6 and 4 Zach et al. (2007)
5 Wedel et al. (2009)
6 Pérez et al. (2013)

dense flow optimization7, with a great overview of the different

7 Fortun et al. (2015)
methods provided by Fortun et al. (2015).

Another dimension of differences between network architec-
tures used in classification tasks is when the two streams of
information, optical flow and RGB images, are fused. The most
popular fusion techniques are called late and early fusion, of
which the differences are in more detail described by Karpathy
et al. (2014). In early fusion, the input streams are brought
together in the original feature space while in late fusion the
input streams both modalities are fused in semantic space.
The same trade-off between early and late fusion is frequently
made within the spatiotemporal space of models. Here tempo-
ral information is frequently traded for spatial depth further
down the network. Although 3D CNNs are also able to capture
motion details, the addition of optical flow to these networks
always benefits classification accuracy. This is likely due to
the recurrent refinements these methods use8. Carreira and 8 Karpathy et al. (2014)

Zisserman (2017) showed that for the I3D model, classification
accuracy solely based on motion patterns is comparable to that
of only images. As images are a depth of 3, RGB, while optical
flow is a flat image with the image values only indicating the
rate of change between frames, this indicates that for these
classification tasks no fine-grained colour or texture patterns
are needed to separate the target classes accurately.

In this section, an overview was provided of some of the
difficulties of modelling the spatiotemporal dimension which
is frequently obtained by introducing new model architectures
using a supervised action classification task to learn a discrim-
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Figure 1: Explored approaches for fusing information over
temporal dimension through the network. Red, green and
blue boxes indicate convolutional, normalization and pool-
ing layers respectively. In the Slow Fusion model, the de-
picted columns share parameters.

3.1. Time Information Fusion in CNNs

We investigate several approaches to fusing information
across temporal domain (Figure 1): the fusion can be done
early in the network by modifying the first layer convolu-
tional filters to extend in time, or it can be done late by
placing two separate single-frame networks some distance
in time apart and fusing their outputs later in the process-
ing. We first describe a baseline single-frame CNN and then
discuss its extensions in time according to different types of
fusion.

Single-frame. We use a single-frame baseline architec-
ture to understand the contribution of static appearance to
the classification accuracy. This network is similar to the
ImageNet challenge winning model [11], but accepts in-
puts of size 170 × 170 × 3 pixels instead of the original
224× 224× 3. Using shorthand notation, the full architec-
ture is C(96, 11, 3)-N -P -C(256, 5, 1)-N -P -C(384, 3, 1)-
C(384, 3, 1)-C(256, 3, 1)-P -FC(4096)-FC(4096), where
C(d, f, s) indicates a convolutional layer with d filters of
spatial size f ×f , applied to the input with stride s. FC(n)
is a fully connected layer with n nodes. All pooling layersP
pool spatially in non-overlapping 2× 2 regions and all nor-
malization layers N are defined as described in Krizhevsky
et al. [11] and use the same parameters: k = 2, n = 5, α =
10−4, β = 0.5. The final layer is connected to a softmax
classifier with dense connections.

Early Fusion. The Early Fusion extension combines in-
formation across an entire time window immediately on the
pixel level. This is implemented by modifying the filters on
the first convolutional layer in the single-frame model by
extending them to be of size 11× 11× 3× T pixels, where
T is some temporal extent (we use T = 10, or approxi-
mately a third of a second). The early and direct connectiv-
ity to pixel data allows the network to precisely detect local
motion direction and speed.

Late Fusion. The Late Fusion model places two sepa-
rate single-frame networks (as described above, up to last
convolutional layer C(256, 3, 1) with shared parameters a
distance of 15 frames apart and then merges the two streams

in the first fully connected layer. Therefore, neither single-
frame tower alone can detect any motion, but the first fully
connected layer can compute global motion characteristics
by comparing outputs of both towers.

Slow Fusion. The Slow Fusion model is a balanced
mix between the two approaches that slowly fuses temporal
information throughout the network such that higher lay-
ers get access to progressively more global information in
both spatial and temporal dimensions. This is implemented
by extending the connectivity of all convolutional layers
in time and carrying out temporal convolutions in addition
to spatial convolutions to compute activations, as seen in
[1, 10]. In the model we use, the first convolutional layer is
extended to apply every filter of temporal extent T = 4 on
an input clip of 10 frames through valid convolution with
stride 2 and produces 4 responses in time. The second and
third layers above iterate this process with filters of tempo-
ral extent T = 2 and stride 2. Thus, the third convolutional
layer has access to information across all 10 input frames.

3.2. Multiresolution CNNs

Since CNNs normally take on orders of weeks to train on
large-scale datasets even on the fastest available GPUs, the
runtime performance is a critical component to our ability
to experiment with different architecture and hyperparame-
ter settings. This motivates approaches for speeding up the
models while still retaining their performance. There are
multiple fronts to these endeavors, including improvements
in hardware, weight quantization schemes, better optimiza-
tion algorithms and initialization strategies, but in this work
we focus on changes in the architecture that enable faster
running times without sacrificing performance.

One approach to speeding up the networks is to reduce
the number of layers and neurons in each layer, but simi-
lar to [28] we found that this consistently lowers the per-
formance. Instead of reducing the size of the network, we
conducted further experiments on training with images of
lower resolution. However, while this improved the run-
ning time of the network, the high-frequency detail in the
images proved critical to achieving good accuracy.

Fovea and context streams. The proposed multiresolu-
tion architecture aims to strike a compromise by having two
separate streams of processing over two spatial resolutions
(Figure 2). A 178 × 178 frame video clip forms an input
to the network. The context stream receives the downsam-
pled frames at half the original spatial resolution (89 × 89
pixels), while the fovea stream receives the center 89 × 89
region at the original resolution. In this way, the the total
input dimensionality is halved. Notably, this design takes
advantage of the camera bias present in many online videos,
since the object of interest often occupies the center region.

Architecture changes. Both streams are processed by
identical network as the full frame models, but starting at

Figure 2.4: A more in-depth illustration of the ap-
proaches towards aggregating temporal informa-
tion as seen in Figure 2.3. Single Frame operates
on the frame-level and ignores the temporal aspect.
Late Fusion compares non-consecutive frames and
merges the feature-representation right before pre-
diction. Early Fusion takes in n-consecutive frames
and learns one joint-representation of time and spa-
tial information that incorporates motion. Slow Fu-
sion decreases the temporal-depth in stages while
merging and comparing different sub-networks.
Figure reproduced from Karpathy et al. (2014).

inative feature space. As these provide difficult modelling
challenges and require significant computational power, cur-
rent methods in both action recognition and localisation tasks
refrain from training these networks themselves and instead
use SOTA feature extractors trained using classification tasks.
Subsequently, it is common practice to introduce a new model
architecture that uses these extracted features for a particular
downstream task. However, arguably this leads to sub-optimal
spatiotemporal feature representation for the task of event-
localisation due to the different domain these videos originate
from compared to action classification tasks and the lesser
reliance on spatio-temporal features. In the following section
we discuss the most popular video datasets used for event
classification and localisation tasks.
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Figure 2.5: An overview of a selection of frequently
used datasets in CV with emphasis on event recog-
nition and detection. One can observe significant
differences in number of classes and samples per
class depending on the annotation-level (action, ob-
ject, sentence, attribute) and domain (image, video).
Videos can either be trimmed or untrimmed, result-
ing in a classification or localisation task. More on
this shown in Figure 2.6 and 2.9.

2.2.2 Datasets

To obtain an understanding of which datasets can be used to
train a model with the TALL-task in mind, an attempt was
made to provide an overview of popular datasets in their
difference size, domain and annotation level. Particularly for
the field of action localisation and classification tasks. For
event-localisation in untrimmed videos, videos need to be
temporally annotated which is a time-consuming task and as
a result leads to a lower amount of samples per class and the
total amount of classes. A simplified overview of the properties
these datasets can be categorised by is shown in Figure 2.6. The
different aspects of these datasets are now shortly discussed.

datasets

annotation

sentence

object

action

temporal
trimmed

untrimmed

domain
video

image

benchmark
yes

no

Figure 2.6: Properties of datasets. Colors are corre-
sponding with Figure 2.9. Used for further illustrat-
ing how methods rely upon different properties of
datasets, including the use of Knowledge Transfer
(KT) from the image to video domain.

Domain The datasets used for classification or localisation
tasks come from either the image or video domain or a combi-
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nation of the two. There is not always a clear correspondence
between the task and the domain of the dataset. For example,
knowledge transfer from the image to the video domain is
common, and some approaches operate on the frame-level in
videos rather than n-consecutive frames as the input of the
model.

Jain et al. (2015b) are the first to provide an in-depth empiri-
cal study of how the recognition of objects within the image
domain can be used for the classification and localisation of
actions. They show that actions have biases towards specific
objects and that the selection thereof is beneficial for action
classification tasks. By using 15000 object classifiers trained
on ImageNet rather than only a select few image-classes that
previous methods frequently used, a significant improvement
was obtained on action classification tasks that could also be
combined with previous video representation methods. On
the frame-level, the likelihood of these object-categories was
averaged over the temporal dimension to obtain a complete
video representation, which was subsequently combined with
additional motion extractors as a representation of the video.
An example of how certain events correlate with certain objects
can be seen in Figure 2.7.
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Figure 4. Qualitative experiment visualizing the heat-map between the 31 most responsive objects (y-axis) and 34 action classes (x-axis)
of the UCF101 dataset (every3rd action class is chosen for clarity). The high responses for semantically related action-object pairs is
apparent. Note the high responses for the objects trampoline, raft, blackboard, kayak and their associated actions.

Although it can depend on the action class and the videos, in
general the results suggest that object responses close to and
involved in the actions matter most. We show the advantage
of using objects for action localization in Section 7.2.

5. Actions have object preference
For a given video dataset of n action classes, we might

not need all N object categories to obtain an optimal repre-
sentation. Only the categories relevant to the action classes,
ideally corresponding to those leading to a discriminative
representation, are required. So the objective is to find
a subset of m object categories from the N object cate-
gories, such that the discriminative power of the represen-
tation is maximized for a given set of action classes. We
refer to these objects as preferred objects. To each action
class j we assign a set of the top R most responsive ob-
ject categories, topR(cj) = R- arg maxi ψx(i). The union
of these sets of object categories, for j = 1..n, gives us a
set of preferred objects for the given set of action classes,
Γ(R) =

⋃
j topR(cj). While the absence of an object cate-

gory in an action class is also informative, it would be less

Classes Video Outside tube Inside tube
Diving 100.0% 100.0% 100.0%
Kicking 66.7% 16.7% 66.7%
Lifting 100.0% 100.0% 50.0%
Riding-horse 100.0% 100.0% 100.0%
Running 50.0% 50.0% 75.0%
Skateboarding 0 0 25.0%
Swinging 66.7% 16.7% 100.0%
Swinging-bar 0 75.0% 75.0%
Swinging-golf 66.7% 33.3% 66.7%
Walking 57.1% 42.9% 86.7%
Mean 60.7% 53.5% 74.4%

Table 2. Average precisions for action classes of UCF Sports
dataset using object responses from: the whole video, only the
background of the action, and only in the vicinity of the action. Ev-
idently, object responses in the vicinity of the action matter most.

discriminating as it may be absent for many other action
classes as well.

We evaluate the impact of object preference on action
classification by varying the value of R in light of a rep-
resentation consisting of (a) objects only and (b) objects

Figure 2.7: An example of how events can be seen as
a probability over objects. For example the activity
BenchPress frequently contains the object bench-
press and barbell. Figure reproduced from Jain et al.
(2015b).

Ma et al. (2017) explore whether images from the web can
be used as a computationally inexpensive approach towards
obtaining training data and improving video classification
performance. The benefits of this approach in contrast to using
entire videos are the increased variation of; imagery, camera
viewpoints, backgrounds, body part visibility and clothing,
without the need to deal with redundant or uninformative
frames that are apparent in videos9. In comparison to videos, 9 Ma et al. (2017)

images are significantly more subjected to a pre-filtering step
in which non-iconic images of a particular action are filtered
out such that only the most discriminative part of an action
remains. Because of this, presumably Ma et al. find that
using unfiltered images from an entire videos are on-par with
selecting only a select few images from the image domain to
use as training data. Based on this finding, they argue that this
can potentially lead to a reduction in annotation labour and
can, therefore, more easily scale-up to larger problems.

Jain et al. (2015a)10 attempt to localise and classify actions 10 Jain, M., van Gemert, J. C., Mensink, T., and Snoek,
C. G. (2015a). Objects2action: Classifying and local-
izing actions without any video example. In Proceed-
ings of the IEEE international conference on computer
vision, pages 4588–4596

in an unsupervised fashion by creating an object and action
embedding space in which the two are subsequently matched,
see Figure 2.8. Jain et al. mention that the limitations of the
most common zero-shot approaches in video classification are
that the relationships between the unknown and known classes
should be predefined by their mutual relationships given by
class-to-attribute mappings. These mappings provide under-
lying lower-level image features that are then shared between
unseen and seen classes. They circumvent this limitation by
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extracting features from the softmax layer of a pre-trained
ImageNet network as a visual representation while using the
textual descriptions of actions and objects from WordNet to
perform the matching between the two. This is made possible
by the fact that ImageNet uses the concept hierarchy from
WordNet, and therefore allows to relate object-classes with
their linguistic counterpart (words) such that a joint-embedding
space can be obtained.

Within the image domain, the most popular dataset is Im-
ageNet11, a large scale hierarchical database of images that 11 Deng et al. (2009)

follows the structure of WordNet. To date, it is by far the
largest and most diverse image dataset. WordNet12 is a lexical 12 Miller (1998)

database of English words in which nouns, verbs, adjectives
and adverbs are grouped into sets of cognitive synonyms,
therefore named synsets. Conceptual-semantic and lexical re-
lations are captured, such that words not close in proximity
are semantically disambiguated. ImageNet exploits this fact
by structuring the image-classes in a hierarchical tree that con-
sequently allows for additional evaluation methods such as
fine-grained vs general classification evaluation or sub-tree
removal. Xian et al. (2017) for this reason specifically mention
its capability to be used as a dataset for zero-shot evaluation
in a broad-setting. As obtaining a broad zero-shot evaluation
dataset was one of our objectives in this work, we use this
property of ImageNet in Section 5.1.1 to accomplish a similar
goal.

Objects2action: Classifying and localizing actions without any video example

Mihir Jain⋆ Jan C. van Gemert⋆‡ Thomas Mensink⋆ Cees G. M. Snoek⋆†

⋆University of Amsterdam ‡Delft University of Technology †Qualcomm Research Netherlands

Abstract

The goal of this paper is to recognize actions in video
without the need for examples. Different from traditional
zero-shot approaches we do not demand the design and
specification of attribute classifiers and class-to-attribute
mappings to allow for transfer from seen classes to unseen
classes. Our key contribution is objects2action, a semantic
word embedding that is spanned by a skip-gram model of
thousands of object categories. Action labels are assigned
to an object encoding of unseen video based on a convex
combination of action and object affinities. Our semantic
embedding has three main characteristics to accommodate
for the specifics of actions. First, we propose a mecha-
nism to exploit multiple-word descriptions of actions and
objects. Second, we incorporate the automated selection
of the most responsive objects per action. And finally, we
demonstrate how to extend our zero-shot approach to the
spatio-temporal localization of actions in video. Experi-
ments on four action datasets demonstrate the potential of
our approach.

1. Introduction
We aim for the recognition of actions such as blow dry

hair and swing baseball in video without the need for ex-
amples. The common computer vision tactic in such a chal-
lenging setting is to predict the zero-shot test classes from
disjunct train classes based on a (predefined) mutual rela-
tionship using class-to-attribute mappings [1, 8, 20, 32, 36].
Drawbacks of such approaches in the context of action
recognition [24] are that attributes like ‘torso twist’ and
‘look-down’ are difficult to define and cumbersome to anno-
tate. Moreover, current zero-shot approaches, be it for im-
age categories or actions, assume that a large, and labeled,
set of (action) train classes is available a priori to guide the
knowledge transfer, but today’s action recognition practice
is limited to at most hundred classes [16, 19, 35, 42]. Dif-
ferent from existing work, we propose zero-shot learning
for action classification that does not require tailored defi-
nitions and annotation of action attributes, and not a single
video or action annotation as prior knowledge.

Figure 1. We propose objects2action, a semantic embedding to
classify actions, such as playing football, playing volleyball, and
horse-riding, in videos without using any video data or action an-
notations as prior knowledge. Instead it relies on commonly avail-
able textual descriptions, images and annotations of objects.

We are inspired by recent progress in supervised video
recognition, where several works successfully demonstrated
the benefit of representations derived from deep convolu-
tional neural networks for recognition of actions [14,17,39]
and events [40, 49]. As these nets are typically pre-trained
on images and object annotations from ImageNet [5], and
consequently their final layer represent object category
scores, these works reveal that object scores are well-
suited for video recognition. Moreover, since these ob-
jects have a lingual correspondence derived from nouns in
WordNet, they are a natural fit for semantic word embed-
dings [6,9,26,29,41]. As prior knowledge for our zero-shot
action recognition we consider a semantic word embedding
spanned by a large number of object class labels and their
images from ImageNet, see Figure 1.

Our key contribution is objects2action, a semantic em-
bedding to classify actions in videos without using any
video data or action annotations as prior knowledge. Instead
it relies on commonly available object annotations, images
and textual descriptions. Our semantic embedding has three
main characteristics to accommodate for the specifics of ac-
tions. First, we propose a mechanism to exploit multiple-
word descriptions of actions and ImageNet objects. Sec-

4588

Figure 2.8: Instead of relying upon knowledge trans-
fer by using class-to-attribute mappings, Jain et al.
(2015a) embed images and textual descriptions of
objects in the same space. Thereafter, they extend
their zero-shot approach towards localisation of ac-
tions in video with promising results.

Annotation Level & Temporal Videos can be annotated
on the action- or sentence-level, while images are frequently an-
notated on the object- or sentence-level. In literature, the notions
of actions and events are frequently used interchangeably. Here,
actions are both referring to a narrow domain of sport-actions,
as well as to the broader sense of actions, such as ripping paper
or shovelling snow13. Depending on the annotation-level, the 13 Kay et al. (2017)

datasets are either used for a localisation or classification task.
In Figure 2.9 the relation between the annotation level and
whether the videos are trimmed or untrimmed is shown. The
action localisation task can be viewed as two consecutive sub-
tasks; the detection of an action and after that the classification
thereof. The TALL-task is different from the usual localisation
task in that the target classes in action localisation setting are
usually fixed and span only up to a few hundred target classes,
while in the former it can be described using any natural lan-
guage text. This formally means that in the TALL-task the
matching between videos and text happens in semantic space
(the labels consist of n-dimensional continuous embeddings),
whereas in general localisation tasks this matching is accom-
plished in label-space (labels only indicate whether a particular
class is apparent in the video with a one or multi-hot discrete
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encoding).
Popular sentence annotated datasets within the image do-

main are MSCoco14, Flickr30k15, OpenImages16. Examples 14 Lin et al. (2014)
15 Plummer et al. (2015)
16 Krasin et al. (2017)

of datasets within the video domain that are annotated on
the sentence level are; Charades-STA17, TACoS18, and on the

17 Gao et al. (2017)
18 Regneri et al. (2013)

action level are UCF101
19, Sports-1M20, HMDB51

21, AVA22,
19 Soomro et al. (2012)
20 Abu-El-Haija et al. (2016)
21 Kuehne et al. (2013)
22 Gu et al. (2017)

Kinetics23. However, whereas within the image domain large

23 Kay et al. (2017)

datasets can have millions of training examples, temporally
annotated datasets consider themselves large with only a few
hundreds or thousand videos24 (Figure 2.5, Table 2.1).

24 Regneri et al. (2013), Gao et al. (2017)
Large temporally annotated datasets naturally exist within

the domain of videos, such as movies with subtitles. However,
a significant difference is that these subtitles describe not what
visually happens within the video, but rather represent what
is being said by the actors that is to a large extent independent
thereof. Therefore, with the introduction of the TALL-task, the
Gao et al. specifically added temporal annotations to the al-
ready existing Charades dataset in order to obtain a larger tem-
porally annotated dataset than was currently available which
they called Charades-STA.

dataset Citation Release Source Focus Annotation Avg. Duration # Videos # Categories Untrimmed? Benchmark?

THUMOS14 Jiang et al. (2014) ’14 YouTube Human Actions Single-label, Temporal 4.6s 18k 101 � �
THUMOS15 Gorban et al. (2015) ’15 YouTube Human Actions Single-label, Temporal 4.6s 23.7k 101 � �
Charades Sigurdsson et al. (2016) ’16 Home-Recordings Human Daily Activities Temporal 30s 10k 157 � �
Youtube-8M Abu-El-Haija et al. (2016) ’16 YouTube General Multi-label 120-500s 8.2e6

4716 � �
ActivityNet1.3 Caba Heilbron et al. (2015) ’16 Web-search Human Actions Multi-label 5m-10m 28k 200 � �
Kinetics Carreira and Zisserman (2017) ’17 YouTube Human Actions Single-label, Temporal 10s 306k 400 � �
AVA Gu et al. (2017) ’17 Movies General Daily Life Multi-label, Temporal 15m 192* 80 � �
Moments in Time Monfort et al. (2018) ’18 Web-search General Single-label 3s 1e6

339 � �

Table 2.1: Summary of major action recognition
datasets.

Besides supervised approaches for learning visual repre-
sentations with labels used as the target, also unsupervised
approaches exist in the literature that do not rely on the afore-
mentioned datasets. Wang and Gupta (2015) use an unsuper-
vised approach for learning video representations by designing
a Siamese-triplet loss network with a ranking loss-function to
train a visual representation. Whereas in previous work either
an auto-encoder was used to reconstruct static images25, they 25 Wang, X. and Gupta, A. (2015). Unsupervised

learning of visual representations using videos. In
Proceedings of the IEEE International Conference on
Computer Vision, pages 2794–2802

build their method upon the realisation that humans instead
learn their visual representation of the outside world through
dynamic sensory input (the slight variation of visual input over
time). In the triplet loss-function, they enforce that two frames
close to each other should have a similar representation while
a randomly sampled third frame should be dissimilar. On the
PASCAL VOC26 dataset, they obtain almost similar results in 26 Everingham et al. (2010)

this unsupervised version with an accuracy of 52.0% compared
to 54.4% for the supervised alternative.

Huang et al. (2016) attempt to learn attributes from images
by using semantic clustering. Their realisation is that large
amounts of human labelling is expensive and that attributes in
the label space are not necessarily discriminative in the feature
space. Instead, they predict attributes that are representative
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and discriminative by introducing artificial clusters while max-
imising their separability in feature space. For more details, we
defer to Huang et al. (2016), but the main point is that to learn
a discriminative feature space for videos or images, unsuper-
vised approaches have been proposed with some indications
of initial success.

Benchmark Popular datasets for evaluating video classifica-
tion in untrimmed videos are THUMOS14 and THUMOS15,
Sports-1m and ActivityNet. Trimmed video datasets include;
UCF101, HMBD51 and more recently also ActivityNet. Al-
though these benchmark datasets have separate training-sets,
to a large extent current models use KT techniques from mod-
els trained on significantly larger datasets to obtain SOTA
performance (e.g. 27,28). The reliance upon KT techniques 27 Carreira and Zisserman (2017)

28 Xie et al. (2017)partially defeats the purpose of these evaluation methods as
this shifts the focus to properties that are independent of the
model. With larger datasets being released every year, this
specifically affects the ability to compare less recent work with
the currently released work as Deep Learning (DL) approaches
frequently benefit significantly from larger datasets.

datasets

image

video

localisation untrimmed
sentence

action

recognition/
detection trimmed

object

action

used for

Figure 2.9: General trends towards which datasets
are used for either the localisation or recogni-
tion/detection tasks.

Idrees et al. (2017) describe how the popular THUMOS chal-
lenge and datasets were created with the purpose of improving
video understanding applications. In the recent THUMOS chal-
lenge of ’14 and ’15, the focus was shifted towards untrimmed
rather than trimmed videos. Idrees et al. argue that for a
less-artificial evaluation setup of action localisation and classi-
fication also background videos should be included in which
a similar scene is apparent of a particular action without the
action actually taking place. This way no longer simplify the
presence of certain objects within the frame can be used to cor-
rectly predict the temporal window of an event or classification
thereof. For example, a piano standing in the background does
not imply it is being played. Therefore the THUMOS ’14 and
’15 both started to include background videos.

Idrees et al. discuss future improvements for obtaining
datasets for improving video understanding and recommend to
place emphasis on actions and activities performed by humans
individually or in groups combined with dense annotations
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for; objects, actions, scenes, attributes and inter-relationships
between objects, actions and the environment. To add the
necessary annotations, they recommend using WordNet which
allows the modelling of structured knowledge to relate the
different nouns, verbs and adjectives needed to understand
language. For this Idrees et al. note that it is important to
consider the trade-off between consistency and diversity. Con-
sistency requires that the labels (e.g. objects or actions) are
reused across videos which helps to relate videos that share
the same labels, whereas diversity is meant to increase the
use of the vocabulary such that also for example synonyms
are used (e.g. man, person). Idrees et al. describe that Word-
Net can be used to relate hyponyms and hypernyms to each
other to transfer attributes and properties in order to save time
and effort while generating richer and dense annotations for a
large video dataset. We will see in Section 5.3.4 and 5.3.5 that
the TACoS and the Charades-STA datasets that were used for
evaluating the TALL-task did not contain a large vocabulary.
Therefore, this evaluation setup favors consistency to a large
extent over diversity. However, arguably diversity is important
for the evaluation-setup of the task of event-localisation given
natural language due to the many complex relationships be-
tween words including synonyms, antonyms and hyponyms.
This is further discussed in the Discussion Section (7).

Instead of improving the video annotation method to im-
prove video understanding, in our approach we attempt to
improve the representation of language directly such that the
relationships between e.g. the hyponyms and hypernyms
between words already contain this similarity. This could po-
tentially uplift the dependency upon costly annotated datasets.

Recently, critique has been brought up regarding the cur-
rent methods and reliance’s upon specific datasets in action
classification and localisation tasks. Including (1) the depen-
dency upon trimmed videos for video classification which is
in contrast to the general nature videos occur in29 and (2) al- 29 Idrees et al. (2017)

though action localisation tasks and datasets partially resolve
this problem these datasets are still confined to a relatively
narrow domain with only a small number of classes30. This 30 Gao et al. (2017)

poses questions about the generalisability of these methods
concerning the goal of achieving general video understanding.
An example of a practical application that would require such
a feature could for example be video-playback of a specific
event through voice commands for streaming services.

2.2.3 Computational Efficiency

When working in the domain of vision the computation ef-
ficiency of the proposed model architecture is important for
many downstream applications. There have been many works
proposed that specifically focus on this aspect for the localisa-
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tion of events in videos. What makes this especially difficult is
the added temporal dimension and large variety of duration
of events that require a more expensive search operation. A
common but slow approach towards this problem is to first
have an action proposal method suggest where a possible ac-
tion occurs which happens using multiple temporal resolutions
using a sliding window approach while utilising extracted fea-
tures from CNNs trained on a different task. This reduces the
amount of training time needed immensely as training visual
representation from scratch is one of the most computationally
expensive operations in CV. After the action proposal network
there follows a proposal classification step. To date this is still
the status quo31, however many computational improvements 31 Xu, H., Das, A., and Saenko, K. (2017). R-c3d: Re-

gion convolutional 3d network for temporal activity
detection. arXiv preprint arXiv:1703.07814

have been proposed. As computational efficiency is such an
essential part of any video search or localisation application,
these are now shortly discussed.

Xu et al. (2017) improve the standard action proposal and
classification pipeline by sharing the parameters between both
individual segment proposal and classification networks which
decreases the computational cost and allows for end-to-end
learning. Xu et al. argue that the use of feature extraction
methods trained on a different task could lead to sub-optimal
representations for the localisation of activities in diverse video
domains, resulting in inferior performance. In addition, during
the action proposal stage, the videos need to be scanned at a
variety of temporal scales using sliding window approaches,
leading to poor computational efficiency. In a similar fashion as
the Faster R-CNN object detection approach, they compute 3D
CNN features and propose temporal regions likely to contain
activities, after that these feature regions are pooled and used
to predict activity classes.

Caba Heilbron et al. (2016) mention that applying action
classifiers at every time location and multiple temporal scales
is unfeasible in a large-scale video analysis application which
in part is causing that activity detection in large-scale video
collections remains relatively unexplored. Caba Heilbron et al.
attempt to improve the initial spatiotemporal proposal step.
The benefit of spatiotemporal proposals that still include time
and space is that this allows separating co-occurring and over-
lapping events. Criteria for success for this initial step are (a)
high recall and relatively good precision but more importantly
that (b) it should produce these proposals quickly. However,
Caba Heilbron et al. show that when proposals are made only
in time excluding the space dimension, limited performance
losses are obtained while it improves the scaling of this method
to significantly larger scale video datasets such as THUMOS
and ActivityNet.

In Figure 2.3, an overview was provided of the different
ways optical flow is included in popular video representation
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learning architectures. Initially, calculating the optical flow of
video segments prevented any of the methods that relied upon
this to run in real-time as these methods could not be applied
in real-time. Zhang et al. (2016) tried to improve upon this
by replacing the optical flow- with motion-estimation. Their
key realisation is that motion and optical flow estimations are
inherently correlated. Motion vectors are being used in video
compression by exploiting how one macroblock of an image
moves across time to reduce the bit rate in video compression.
Therefore, in contrast to optical flow estimation, the movement
patterns are coarse and not precise. By using the encoded video
directly, and learning how this corresponds with the optical
flow through a parameterised model, significant improvements
were obtained including real-time motion estimation that was
much closer to the precision found in optical flow.

Nguyen et al. (2017) propose a weakly supervised deep neu-
ral network that selects a sparse subset of frames for the task of
action recognition. Nguyen et al. introduce a loss-function that
penalises both the classification error while also encouraging
sparse frame selection to predict the appropriate class. As a
result, instead of analysing the whole video before making the
class prediction, only a subset of the frames in the video are
observed before making the prediction. As argued, this is es-
pecially important in untrimmed videos in which only a small
fraction of the frames actually contain an action of interest.
SOTA was obtained on the THUMOS14 and ActivityNet1.3
dataset indicating the success of this approach.

2.3 Language Representation - Modeling Dif-
ficulties

Thus far we have discussed some of the identified problems
with learning an appropriate video representation, without
mentioning the efforts done to improve the representation
of language. However, when it comes to searching or local-
ising specific events denoted in natural language text, this
is arguably equally important. Although the TALL-task is
new and the inclusion of natural language has been relatively
unexplored32, there are a few works in literature that take 32 Gao et al. (2017)

a language first-approach when it comes to video or image
understanding which are discussed now.

De Boer et al. (2017) attempt to provide an overview of
the current challenges of zero example video event retrieval.
In their work they focus on the TRECVID MED33 challenge; 33 Over et al. (2015)

retrieving relevant video clips given only a precise textual
description of a complex event. As such it shares a similar ob-
jective as is attempted here. They emphasise on two challenges
of designing an effective system for zero example complex
event retrieval in video; the vocabulary- and concept selection-
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challenge.
For the concept selection challenge, the objective is to find

the right concepts to pre-train on. Not all concepts are deemed
equally useful for the transfer of knowledge to unseen classes,
for example, ImageNet contains a large variety of dog breeds
unimportant for most tasks. De Boer et al. further expand on
existing literature by showing that including high-level con-
cepts (e.g. events) are generally more important than low-level
concepts (objects) for accurate performance for the task of event
recognition given any textual description. Improvements are
however obtained when combining the two. Earlier work al-
ready demonstrated that task-specific concept-selection in con-
trast to selecting all concepts lead to improved performance34. 34 Mazloom et al. (2013)

Besides, it can be expected that whereas some concepts have
clear visual correspondences others may not, which potentially
limits their usefulness to be matched with visual-features.

The second challenge is the concept selection challenge in
which words in the query have to be matched with the pre-
trained concepts obtained in the vocabulary challenge. Liu
et al. (2007) provide five different ways to achieve this, includ-
ing; using a KB, selecting the most relevant concepts in the
training-set based on machine learning methods and incor-
porating relevance feedback from the user click behaviour to
re-order the search results over time. Our approach here can
be considered an instance of an approach towards solving the
vocabulary challenge that uses a KB. By creating systematic
language embeddings with the usage of a KB, relating the
seen vocabulary during training time to the unseen vocabulary
during testing is expected to improve.

De Boer et al. designed a system that augments and or
changes the User User Query (UQ) into an underlying System
Query (SQ). For each word in the UQ that is not in the training-
set the closest word in the word2vec vocabulary are averaged
till the average cosine similarity between the UQ and actual
word-embedding does not increase any more. Only words are
included that have a cosine similarity above a certain threshold.
This way the problem of query drift is partially prevented, in
which replacing words used in the UQ with multiple words
in the SQ degrades the actual similarity between the UQ and
SQ. In our work, instead of doing query expansion from UQ
to SQ and keeping the representation of language fixed, an
attempt is made to encode the essential relationships between
close concepts directly in the language representation.

When dealing with the vocabulary challenge, De Boer et al.
see that concepts can relate to each other in two important
ways. On the levels of granularity and complexity35. The linguis- 35 De Boer et al. (2017)

tic terms for the former are hyponyms (spoon is the hyponym
of cutlery) and hypernyms (colour is the hypernym of red). At
the same time, events can be described on different levels of
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complexity, on the object level, basic actions, activities, interac-
tions or on an even higher level of complex activities involving
people interacting with other people and objects. As these rela-
tionships are already an essential part within KB, using a KB
directly to solve the vocabulary challenge could make sense.
The concept selection challenge, however, remains an issue
using this approach as the visual cues that are matched with
language in the cross-modal embedding space is ultimately
dependent upon the selection of visual examples.

Whereas significant progress has been made in learning
visual-semantic embeddings for zero-shot learning, relating
images to text is still far from a resolved challenge36. Reed et al. 36 Reed et al. (2016)

(2016) take a language first approach in an attempt to solve the
particular challenge of matching images with fine-grained tex-
tual descriptions of image-classes even for zero-shot test cases.
Although Reed et al. focus on zero-shot image recognition and
retrieval in a narrow domain of birds, the primary objective
is shared in which language rather than vision is the focus
towards improving zero-shot event recognition. The datasets
that are available for training such a model are, however, lim-
ited. Wikipedia is one of the largest sources of textual data
but is not visually focused, whereas selecting only the visu-
ally centred subset thereof once again makes the dataset too
small. Reed et al. (2016) hypothesise that using larger-capacity
text models are required for high zero-shot text embedding
methods, which increase the reliance on larger visually centred
datasets: images with multiple visual descriptions. Their ap-
proach leads to SOTA performance on the CaltechUCSD Birds
200-2011 dataset.

Another difficulty Reed et al. (2016) face is how to train
models end-to-end in which both the visual and textual rep-
resentation are being learned jointly. The CUB and Flowers
datasets were used with Amazon Mechanical Turk (AMT) be-
ing used to obtain ten visual descriptions for each image. By
using a CNN-RNN model architecture for learning the rep-
resentation of language on the character level, robustness for
typos was obtained. The learning objective was formulated
as a surrogate objective function where the textual and visual
representation of training examples from the same class were
forced to be the same. SOTA performance was obtained using
this approach which indicates that current class-to-attribute
mappings are not required to obtain high performance given
this particular task37. However, the careful selection of visually 37 Reed et al. (2016)

grounded image descriptions and narrowly confined domain
the images are situated in within the CUB and Flowers dataset
make it difficult to generalise these findings to the domain of
event-localisation given natural language text as this would
rely more on coarse rather than narrow video understanding.

In 2017 ConceptNet 5.5 was introduced with the intention
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to further improve language machine learning applications
such as methods towards obtaining word embeddings. The
multilingual KB was explicitly designed to represent general
knowledge involved in understanding language by incorporat-
ing knowledge from multiple KBs while also adding additional
expert knowledge. Speer et al. (2017) note that when Con-
ceptNet is combined with word embeddings acquired using
distributional word semantics it provides applications with
additional understanding that can not be obtained using solely
distributional embeddings, which is in line with our objec-
tive in this work. The dataset consists of ternary relations
< subject, relation, object >, and includes inter-language rela-
tions. In their follow-up paper38, the authors go into detail how 38 Speer and Lowry-Duda (2017)

to obtain improved language embeddings using ConceptNet in
a method called retrofitting. This resulted in the already men-
tioned Numberbatch in the Introduction, the current SOTA in
language embeddings. Our approach resembles the inclusion
of both the knowledge contained in ConceptNet and distribu-
tional word embedding approaches. The differences between
their approach and ours is further discussed in Section 2.5.

2.4 Remarks & Sub-Conclusions
In the previous sections we have explored some difficulties
in literature in obtaining an effective video representation for
video understanding tasks. In specific, the lack of task-specific
end-to-end trained video representations and large-scale video
datasets combined with efficient models for event-localisation
are frequently brought up as the most difficult challenges cur-
rently limiting the speed in which the field can progress. More
importantly, the representation of video is still being learned
using only a select few target event classes represented by a
one hot encoding which greatly simplifies the usage of lan-
guage. Arguably for the task of event-localisation a thorough
understanding of how visual cues correspond with language
is needed. Gao et al. (2017) in their approach represent lan-
guage using general language embeddings obtained using
distributional word vector methods. In our work, we attempt
to improve the representation of language specifically with
this task in mind. The next section provides the reader with a
general introduction to GCs and how they can be potentially
used to obtain language embeddings specifically tailored to
the TALL-task.

2.5 Graph Convolutions & Language Em-
beddings

GCNs have recently become popular with two main direc-
tions to their applicability; link prediction and node classifi-
cation39,40. Graph Convolutional Networks models share the 39 Goyal and Ferrara (2017)

40 Cai et al. (2017)
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objective of taking in a graph structure G = (V , E) and produce
node-level output representations Z in an attempt to minimise
the reconstruction error of the graph. Therefore, Z can be
considered a condensed node-embedding feature representa-
tion of the graph. These models share a feature description
xi for every node i represented in the matrix X of size N xD
with an additional adjacency matrix A that for each node con-
tains a multi-hot encoding representing the relationships to
neighbouring nodes.

For our task, the objective is to find suitable node-embedding
representations of the nodes in the ConceptNet KB in which
each node roughly corresponds with one word in the English
language. As a result, node classification methods could at least
in theory be applicable here as these methods have been shown
to efficiently encode complex graphs to low-dimensional word
vectors. In unsupervised classification approaches, the heuris-
tic can be used that the local neighbourhood of a particular
node should have a more similar feature-representation than
nodes further apart in the graph. When it comes to obtaining
low-dimensional language embeddings, the current SOTA ac-
cording to many of the intrinsic bench-marking metrics (see
6.2) is actually based on ConceptNet41,42 which is a knowledge 41 Havasi et al. (2007)

42 Speer and Havasi (2013)graph that connects words and phrases with labelled edges.
Numberbatch uses the technique called retrofitting in combi-
nation with additional efforts towards decreasing the number
of biases, including gender bias and ethnic biases. A compar-
ison to other language embeddings on a select few intrinsic
evaluation methods and bias-metrics can be seen in Figure 1.2.

Now follows a short comparison between our proposed
solution and the retrofitting method.

2.5.1 Retrofitting vs Graph Convolutions

Retrofitting In retrofitting lexical relational sources are
used to obtain higher quality semantic word vectors as a post-
processing step through belief propagation which can be ap-
plied to any vector training model43. Therefore this approach 43 Faruqui et al. (2014)

can also be applied on any pre-trained word-embedding. The
prerequisite is a set of words and their representations given
by a vocabulary V = w1, · · · , wn and an ontology Ω that en-
codes the relationships between the words which is repre-
sented as an undirected graph G consisting of vertices and
edge pairs (V,E) with one vertex for each word type and edges
(wi, wj) ∈ E ⊆ VxV. The matrix ~Q is a collection of vec-
tor representations ~qi ∈ Rd for each wi ∈ V where d is the
length of the word vectors. Our objective is to learn the ma-
trix Q = (q1, · · · , qn) such that the columns are close to their
counterparts in ~Q in addition to the adjacent vertices in Ω. The
distance between a pair of vectors is defined by the Euclidean
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distance, such that the minimisation objective becomes,

Ψ(Q) =
n

∑
i=1


αi‖qi − q̂i‖2 + ∑

(i,j)∈E
βij‖qi − qj‖2


 (2.1)

with α and β determining the weight between the two loss-
function components. As Ψ is convex in Q, this can be solved
using a system of linear equations. Faruqui et al. (2014) state
that running the following update rule, which is the first deriva-
tive of Ψ with respect to qi, and equating it to zero for ten
iterations converges within 10−2 distance from the optimal
solution within 5 seconds given the dataset sizes displayed in
Figure 2.10.

prior approach here since it will serve as a baseline.
Here semantic lexicons play the role of a prior on Q
which we define as follows:

p(Q) ∝ exp


−γ

n∑

i=1

∑

j:(i,j)∈E
βij‖qi − qj‖2




(2)
Here, γ is a hyperparameter that controls the
strength of the prior. As in the retrofitting objec-
tive, this prior on the word vector parameters forces
words connected in the lexicon to have close vec-
tor representations as did Ψ(Q) (with the role of Q̂
being played by cross entropy of the empirical dis-
tribution).

This prior can be incorporated during learn-
ing through maximum a posteriori (MAP) estima-
tion. Since there is no closed form solution of
the estimate, we consider two iterative procedures.
In the first, we use the sum of gradients of the
log-likelihood (given by the extant vector learning
model) and the log-prior (from Eq. 2), with respect
to Q for learning. Since computing the gradient of
Eq. 2 has linear runtime in the vocabulary size n, we
use lazy updates (Carpenter, 2008) for every k words
during training. We call this the lazy method of
MAP. The second technique applies stochastic gra-
dient ascent to the log-likelihood, and after every k
words applies the update in Eq. 1. We call this the
periodic method. We later experimentally compare
these methods against retrofitting (§6.2).

3 Word Vector Representations

We now describe the various publicly available pre-
trained English word vectors on which we will test
the applicability of the retrofitting model. These
vectors have been chosen to have a balanced mix
between large and small amounts of unlabeled text
as well as between neural and spectral methods of
training word vectors.

Glove Vectors. Global vectors for word represen-
tations (Pennington et al., 2014) are trained on ag-
gregated global word-word co-occurrence statistics
from a corpus, and the resulting representations
show interesting linear substructures of the word
vector space. These vectors were trained on 6 bil-
lion words from Wikipedia and English Gigaword

Lexicon Words Edges
PPDB 102,902 374,555
WordNetsyn 148,730 304,856
WordNetall 148,730 934,705
FrameNet 10,822 417,456

Table 1: Approximate size of the graphs obtained from
different lexicons.

and are of length 300.1

Skip-Gram Vectors (SG). The word2vec
tool (Mikolov et al., 2013a) is fast and currently in
wide use. In this model, each word’s Huffman code
is used as an input to a log-linear classifier with
a continuous projection layer and words within a
given context window are predicted. The available
vectors are trained on 100 billion words of Google
news dataset and are of length 300.2

Global Context Vectors (GC). These vectors are
learned using a recursive neural network that incor-
porates both local and global (document-level) con-
text features (Huang et al., 2012). These vectors
were trained on the first 1 billion words of English
Wikipedia and are of length 50.3

Multilingual Vectors (Multi). Faruqui and Dyer
(2014) learned vectors by first performing SVD on
text in different languages, then applying canonical
correlation analysis (CCA) on pairs of vectors for
words that align in parallel corpora. The monolin-
gual vectors were trained on WMT-2011 news cor-
pus for English, French, German and Spanish. We
use the Enligsh word vectors projected in the com-
mon English–German space. The monolingual En-
glish WMT corpus had 360 million words and the
trained vectors are of length 512.4

4 Semantic Lexicons

We use three different semantic lexicons to evaluate
their utility in improving the word vectors. We in-
clude both manually and automatically created lexi-
cons. Table 1 shows the size of the graphs obtained

1http://www-nlp.stanford.edu/projects/
glove/

2https://code.google.com/p/word2vec
3http://nlp.stanford.edu/˜socherr/

ACL2012_wordVectorsTextFile.zip
4http://cs.cmu.edu/˜mfaruqui/soft.html

Figure 2.10: Approximate size of the graphs used to
apply retrofitting on. Table reproduced by Faruqui
et al. (2014)

qi =
∑j:(i,j)∈E βijqj + αi q̂i

∑j:(ij)∈E βij + αi
(2.2)

The first term in Equation 2.1 weighted by α can be interpreted
as a prior on the representation of the word-embeddings.

Graph Convolutions The specific GCN we are using is
called GraphSAGE. A general introduction specifically de-
signed to compare this method with the retrofitting technique
is given now, for a more thorough overview of the GraphSAGE
we defer to Section 3.3.

In contrast to the standard GCN that learns the node-level
feature representation in a transductive setting in which during
training and testing the same graph is being used, GraphSAGE
sets itself apart by learning node feature representations in an
inductive setting. Compared to the transductive setting, in the
inductive framework one must learn to recognise structural
properties of a node’s neighbourhood that reveals both the
node’s local role in the graph as well as its global position44. 44 Hamilton et al. (2017)

We expect that the added information about the node’s global
role in the graph that is not included in the retrofitting setup
further improves the zero-shot learning performance due to its
added structure.

Whereas in the transductive setting information is propa-
gated from the local neighbourhood only, the added require-
ment to incorporate global information of the entire-graph in-
creases the computational cost significantly. For computational
efficiency Hamilton et al. propose the SAmple and aggreGatE
method (GraphSAGE). Here local neighbourhood information
is first sampled by a neighbourhood function N (v) that takes
in a vertex and returns a random one from the neighbourhood
which is defined as being within n hops distance. One hops
is being equal to one edge-traversal starting from a particular
node of interest. As the retrofitting technique does not feature
any stochastic process, this marks one difference between both
methods. Subsequently, depending on the number of hidden
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layers, information is aggregated from the local neighbourhood
using a variety of parameterised aggregator functions. The
term aggregator function is being used to describe any function
that combines the existing node feature representation h and in-
corporates additional local neighbourhood information within
this representation. Starting with the node feature embeddings
x (the language embeddings which are equivalent to q̂i in the
retrofitting example) which is initially set to be equal to h,
the objective is to learn a feature representation zu through a
chosen aggregator function to minimise the following objective
function:

JG(zu) = − log(σ(zT
u zv))−Q · E

vn∼Pn(v)
log(σ(−zT

u zvn)) (2.3)

Where zu is the result of one or multiple layers of parame-
terised node feature aggregation functions with a fully con-
nected layer followed by a non-linearity. The global position of
the node is added indirectly to the node-feature representation
by enforcing that negative samples (zvn sampled by Pn(v))
should be dissimilar. It is important to note that JG updates
and uses the feature representation of zu instead of the original
node feature representation as was the case in the retrofitting
example (q̂i). As such, the representation of zu can become
significantly different from the original feature representation
(q̂i in the retrofitting example, x in the GraphSAGE example).
Hence, the main difference between the methods of retrofitting
and GraphSAGE is that information in the latter is aggregated
using (1) a parameterised function and non-linearity optimized
by gradient descent using (2) a sampling technique instead of
the entire neighbourhood and most importantly (3) is depen-
dent upon the learned feature representations instead of the
initially learned feature representation from the distributional
word-embedding method.
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3 Related Work
In our work we use the TALL network architecture introduced
by Gao et al. (2017) in order to temporally localise events given
extracted video features and language embeddings obtained
using the GraphSAGE model architecture introduced by Hamil-
ton et al. (2017). Therefore an overview of these works is now
discussed in depth, in addition to some work centred around
the evaluation of word-embeddings and zero-shot evaluation
methods that are used in the methods and experimental setup
section.
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Figure 2. Cross-modal Temporal Regression Localizer (CTRL) architecture. CTRL contains four modules: a visual encoder to extract
features for video clips, a sentence encoder to extract embeddings, a multi-modal processing network to generate combined representations
for visual and text domain, and a temporal regression network to produce alignment scores and location offsets.

tail. CTRL contains four modules: a visual encoder to ex-
tract features for video clips, a sentence encoder to extract
embeddings, a multi-modal processing network to generate
combined representations for visual and text domain, and
a temporal regression network to produce alignment scores
and location offsets between the input sentence query and
video clips.

3.1. Problem Formulation

We denote a video as V = {ft}Tt=1, T is the frame num-
ber of the video. Each video is associated with temporal
sentence annotations: A = {(sj , τsj , τej )}Mj=1, M is the sen-
tence annotation number of the video V , sj is a natural lan-
guage sentence of a video clip, which has τsj and τej as start
and end time in the video. The training data are the sen-
tence and video clip pairs. The task is to predict one or more
(τsj , τ

e
j ) for the input natural language sentence query.

3.2. CTRL Architecture

Visual Encoder. For a long untrimmed video V , we gen-
erate a set of video clips C = {(ci, tsi , tei )}Hi=1 by temporal
sliding windows, where H is the total number of the clips
of the video V , tsi and tei are the start and end time of video
clip ci. We define visual encoder as a function Fve(ci) that
maps a certain clip ci and its context to a feature vector fv ,
whose dimension is ds. Inside the visual encoder, a fea-
ture extractor Ev is used to extract clip-level feature vec-
tors, whose input is nf frames and output is a vector with
dimension dv . For one video clip ci, we consider itself (as
the central clip) and its surrounding clips (as context clips)
ci,q, q ∈ [−n, n], j is the clip shift, n is the shift boundary.

We uniformly sample nf frames from each clip (central and
context clips). The feature vector of central clip is denoted
as f ctlv . For the context clips, we use a pooling layer to cal-
culate a pre-context feature fprev = 1

n

∑−1
q=−nEv(ci,q) and

post-context feature fpostv = 1
n

∑n
q=1Ev(ci,q). Pre-context

feature and post-context feature are pooled separately, as
the end and the start of an activity can be quite different and
both could be critical for temporal localization. fprev , f ctlv
and fpostv are concatenated and then linearly transformed to
the feature vector fv with dimension ds, as the visual repre-
sentation for clip ci.

Sentence Encoder. A sentence encoder is a function
Fse(sj) that maps a sentence description sj to a embedding
space, whose dimension is ds( the same as visual feature
space ). Specifically, a sentence embedding extractor Es is
used to extract a sentence-level embedding f ′s and is fol-
lowed by a linear transformation layer, which maps f ′s to
fs with dimension ds, the same as visual representation fv .
We experiment two kinds of sentence embedding extractors,
one is a LSTM network which takes a word as input at each
step, and the hidden state of final step is used as sentence-
level embedding; the other is an off-the-shelf sentence en-
coder, Skip-thought [13]. More details would be discussed
in Section 4.

Multi-modal Processing Module. The inputs of the
multi-modal processing module are a visual representation
fv and a sentence embedding fs, which have the same di-
mension ds. We use vector element-wise addition (+), vec-
tor element-wise multiplication (×) and vector concatena-
tion (‖) followed by a Fully Connected (FC) layer to com-
bine the information from both modalities. Addition and

Figure 3.1: The TALL module architecture; Cross-
modal Temporal Regression Localizer (CTRL) archi-
tecture. CTRL contains four modules: a visual en-
coder to extract features for video clips, a sentence
encoder to extract textual embeddings, a multi-
modal processing network to generate combined
representations for the visual and text domain, and
a temporal regression network to produce align-
ment scores and location offsets. Figure and its
description reproduced from Gao et al. (2017).

3.1 TALL Model Architecture
Gao et al. (2017) mainly focus in their work on finding a suit-
able solution for their earlier introduced TALL-task by ob-
taining an appropriate model to project language and visual
features into a common cross-modal embedding space for ac-
curate temporal localisation. As this is a newly introduced
task, no earlier benchmark scores exist1. They address the 1 Gao et al. (2017)

problems on how to localise events of significantly different
lengths and how to use natural language text in the process
as opposed to using only a small list of pre-defined event
classes in a completely supervised fashion. The former can be
characterised as a computational problem as densely sampling
features and aggregating information on multiple time-scales
increases the search space significantly. The latter is changing
the modelling formulation from a completely supervised and
balanced classification problem into one with a more complex
cross-modal embedding space in which both the labels (text)
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and video are projected into a continuous space in which the
matching happens between the two.

An overview of the model architecture that was used to
address these issues can be seen in Figure 3.1 and is introduced
as the Cross-modal Temporal Regression Localizer (CTRL)
model architecture. The most important components are the;
visual encoder, which maps video segments into visual features
fv, sentence encoder; that maps text to textual features fs, a multi-
modal processing unit; that combines the two modalities into
one joint representation fsv, and lastly the temporal localisation
regression network; that consists of two separate loss-functions
that optimize for the similarity between the two modalities
(alignment score) and the predictions of the start and end time
of the particular event given the visual input (location regressor).

3.1.1 Modality Feature Extraction
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Figure 6. Performance comparison of different sentence embed-
ding.

datasets in object detection, like ReferIt [11], Flickr30k En-
tities [20], which contains over 100k sentences).

Comparison with other methods. We test our system
variants and baseline methods on TACoS and report the re-
sult for IoU ∈ {0.1, 0.3, 0.5} and Recall@{1, 5}. The
results are shown in Table 1. “Random” means that we
randomly select n windows from the test sliding windows
and evaluate Recall@n with IoU=m. All methods use the
same C3D features. VSA-RNN uses the end-to-end trained
LSTM as the sentence encoder and all other methods use
pre-trained Skip-thought as sentence embedding extractor.

We can see that visual retrieval baselines (i.e. VSA-
RNN, VSA-STV) lead to inferior performance, even com-
pared with our pure alignment model CTRL(aln). We be-
lieve the major reasons are two-fold: 1) the multilayer align-
ment network learns better alignment than the simple cosine
similarity model, which is trained by hinge loss function; 2)
visual retrieval models do not encode temporal context in-
formation in a video. Pre-defined classifiers also produce
inferior results. We think it is mainly because the pre-
defined actions and objects are not precise enough to rep-
resent sentence queries. By comparing Verb and Verb+Obj,
we can see that additional object (such as “knife”, “egg”)
information helps to represent sentence queries.

Temporal action boundary regression As described
before, we implemented a temporal localization loss func-
tion similar to the one in SCNN [26], which consider clip
overlap. Experiment results show that CTRL(loc) does
not bring much improvement over CTRL(aln), perhaps be-
cause CTRL(loc) still relies on clip selection from sliding
windows, which may not overlap with ground truth well.
CTRL(reg-np) outperforms CTRL(aln) and CTRL(loc) sig-
nificantly, showing the effectiveness of temporal regression
model. By comparing CTRL(reg-p) and CTRL(reg-np) in
Table 1, it can be seen that non-parameterized setting helps
the localizer regress the action boundary to a more accurate
location. We think the reason is that unlike objects can be
re-scaled in images due to camera projection, actions’ time
spans can not be easily rescaled in videos (we don’t consider
slow motion and quick motion). Thus, to do the boundary
regression effectively, the object bounding box coordinates

Table 1. Comparison of different methods on TACoS

Method
R@1

IoU=0.5
R@1

IoU=0.3
R@1

IoU=0.1
R@5

IoU=0.5
R@5

IoU=0.3
R@5

IoU=0.1
Random 0.83 1.81 3.28 3.57 7.03 15.09
Verb 1.62 2.62 6.71 3.72 6.36 11.87
Verb+Obj 8.25 11.24 14.69 16.46 21.50 26.60
VSA-RNN 4.78 6.91 8.84 9.10 13.90 19.05
VSA-STV 7.56 10.77 15.01 15.50 23.92 32.82
CTRL (aln) 10.67 16.53 22.29 19.44 29.09 41.05
CTRL (loc) 10.70 16.12 22.77 18.83 31.20 45.11
CTRL (reg-p) 11.85 17.59 23.71 23.05 33.19 47.51
CTRL (reg-np) 13.30 18.32 24.32 25.42 36.69 48.73

Table 2. Comparison of different methods on Charades-STA

Method
R@1

IoU=0.5
R@1

IoU=0.7
R@5

IoU=0.5
R@5

IoU=0.7
Random 8.51 3.03 37.12 14.06
VSA-RNN 10.50 4.32 48.43 20.21
VSA-STV 16.91 5.81 53.89 23.58
CTRL (aln) 18.77 6.53 54.29 23.74
CTRL (loc) 20.19 6.92 55.72 24.41
CTRL (reg-p) 22.27 8.46 57.83 26.61
CTRL (reg-np) 23.63 8.89 58.92 29.52

Table 3. Experiments of complex sentence query.

Method
R@1

IoU=0.5
R@1

IoU=0.7
R@5

IoU=0.5
R@5

IoU=0.7
Random 11.83 3.21 43.28 18.17
CTRL 24.09 8.03 69.89 32.28
CTRL+Fusion 25.82 8.32 69.94 32.81

should be first normalized to some standard scale, but for
actions, time itself is the standard scale.

Some prediction and regression results are shown in Fig-
ure 7. We can see that the alignment prediction gives
a coarse location, which is limited by the fixed window
length; the regression model helps to refine the clip’s bound-
ing box to a higher IoU location.

4.4. Experiments on Charades-STA

In this part, we evaluate CTRL models and baseline
methods on Charades-STA and report the results for IoU ∈
{0.5, 0.7} and Recall@{1, 5}, which are shown in Table 2.
The lengths of sliding windows for test are 128 and 256,
window’s overlap is 0.8. It can be seen that the results
are consistent with those in TACoS. CTRL(reg-np) shows
a significant improvement over CTRL(aln) and CTRL(loc).
The non-parameterized settings (CTRL(reg-np)) work con-
sistently better than the parameterized settings (CTRL(reg-
p)). Figure 8 shows some prediction and regression results.

We also test complex sentence query on Charades-STA.
As shown in Table. 3, “CTRL” means that we sim-
ply input the whole complex sentence into CTRL model.
“CTRL+fusion” means that we input each sentence of a
complex query separately into CTRL, and then do a late fu-
sion. Specifically, we compute the average alignment score

cite
include random

include random

cite

Figure 3.2: Significant performance differences were
observed using either a learn-able sentence en-
coder from the word-level or pre-trained sentence-
embeddings. Gao et al. (2017) accredit the observed
difference due to the limited dataset size that make
the training on the word-level unfeasible. Figure
reproduced from Gao et al. (2017).

Visual features are extracted from untrimmed video clips by
cutting the video using a multi-scale sliding window with
80% overlap with [64, 128, 256, 512] frames using the C3D
modal architecture trained on the Sports1M dataset. As the
C3D clip-level feature extractor model takes in only 64 consec-
utive frames, frames are sampled uniformly when the sliding
window length exceeds this amount. Context clips besides
the central clip are given to the model with the intention of
improving the ability to localise the temporal boundaries using
the location regression loss (Section 3.1.3). As events can be of
arbitrary length, multiple context clips are average pooled to ac-
commodate longer video clips ( f pre,ctx

v and f post,ctx
v ). Language

embeddings are obtained either on the word- (Word2Vec) or
sentence-level (Skip-Thoughts) which are both obtained using
networks that rely upon the distributional hypothesis. The
authors accredit the lower score they obtained for training
sentence embeddings by using a LSTM aggregator function on
the word-level due to the limited dataset size (Figure 3.2).

multiplication operation allow additive and multiplicative
interaction between two modalities and don’t change the
feature dimension. The FC layer allows interaction among
all elements. The input dimension of the FC layer is 2 ∗ ds
and the output dimension is ds. The outputs from all three
operations are concatenated to construct a multi-modal rep-
resentation fsv = (fs × fv) ‖ (fs + fv) ‖ FC(fs ‖ fv),
which is the input for our core module, temporal localiza-
tion regression networks.

Temporal Localization Regression Networks. Tempo-
ral localization regression network takes the multi-modal
representation fsv as input, and has two sibling output lay-
ers. The first one outputs an alignment score csi,j between
the sentence sj and the video clip ci. The second one out-
puts clip location regression offsets. We design two location
offsets, the first one is parameterized offset: t = (tc, tl),
where tc and tl are parameterized central point offset and
length offset respectively. The parameterization is as fol-
lows:

tp = (p− pc)/lc, tl = log(l/lc) (1)

where p and l denote the clip’s center coordinate and clip
length respectively. Variables p, pc are for predicted clip
and test clip (like wise for l). The second offset is non-
parameterized offset: t = (ts, te), where ts and te are the
start and end point offsets.

ts = s− sc, te = e− ec (2)

where s and e denote the clip’s start and end coordinate re-
spectively. Temporal coordinate regression can be thought
as clip location regression from a test clip to a nearby
ground-truth clip, as the original clip could be either too
tight or too loose, the regression process tend to find better
locations.

3.3. CTRL Training

Multi-task Loss Function. CTRL contains two sibling
output layers, one for alignment and the other for regres-
sion. We design a multi-task loss L on a mini-batch of
training samples to jointly train for visual-semantic align-
ment and clip location regression.

L = Laln + αLreg (3)

where Laln is for visual-semantic alignment and Lreg is for
clip location regression, and α is a hyper-parameter, which
controls the balance between the two task losses. The align-
ment loss encourages aligned clip-sentence pairs to have
positive scores and misaligned pairs to have negative scores.

Laln =
1

N

N∑

i=0

[αclog(1 + exp(−csi,i))+

N∑

j=0,j 6=i
αwlog(1 + exp(csi,j))] (4)
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Figure 3. Intersection over Union (IoU) and non-Intersection over
Length (nIoL).

where N is the batch size, csi,j is the alignment score be-
tween sentence sj and video clip ci, αc and αw are the hy-
per parameters which control the weights between positive
( aligned ) and negative ( misaligned ) clip-sentence pairs.

The regression loss Lreg is calculated for the aligned
clip-sentence pairs. A sentence sj annotation contains start
and end time (τsj , τ

e
j ). The aligned sliding window clip ci

has (tsi , t
e
i ). The ground truth offsets t∗ are calculated from

start and end times.

Lreg =
1

N

N∑

i=0

[R(t∗x,i − tx,i) +R(t∗y,i − ty,i)] (5)

where x and y indicate p and l for parameterized offsets, or
s and e for non-parameterized offsets. R(t) is smooth L1

function.
Sampling Training Examples. To collect training sam-

ples, we use multi-scale temporal sliding windows with
[64, 128, 256, 512] frames and 80% overlap. (Note that,
at test time, we only use coarsely sampled clips.) We
use the following strategy to collect training samples T =
{[(sh, τsh, τeh), (ch, tsh, teh)]}NT

h=0. Each training sample con-
tains a sentence description (sh, τ

s
h, τ

e
h) and a video clip

(ch, t
s
h, t

e
h). For a sliding window clip c from C with tem-

poral annotation (ts, te) and a sentence description s with
temporal annotation (τs, τe), we align them as a pair of
training samples if they satisfy (1) Intersection over Union
(IoU) is larger than 0.5; (2) non Intersection over Length
(nIoL) is smaller than 0.2 and (3) one sliding window clip
can be aligned with only one sentence description. The rea-
son we use nIoL is that we want the the most part of the
sliding window clip to overlap with the assigned sentence,
and simply increasing IoU threshold would harm regression
layers ( regression aims to move the clip from low IoU to
high IoU). As shown in Figure 3, although the IoU between
c and s1 is about 0.5, if we assign c to s1, then it will disturb
the model ,because c contains information of s2.

4. Evaluation
In this section, we describe the evaluation settings and

discuss the experiment results

Figure 3.3: Illustrative schematic overview of the
different terms used to extract positive training
examples and Intersection over Union (IoU)/non-
Intersection of Length (nIoL) calculations. Figure
reproduced from Gao et al. (2017)

3.1.2 Sampling Training Examples

As the multi-scale sliding window approach towards obtaining
visual features does not lead to video-clips that overlap entirely
with the temporal sentence annotations windows, Gao et al.
(2017) mine training examples only if (1) the IoU between the
extracted video-segment and temporal sentence annotation
window is greater than 0.5, the non-nIoL is smaller than 0.2
and (3) only one sliding window clip can be assigned to one
sentence description. In Figure 3.3 an illustrative example is
shown of the different terms. While using IoU is standard
practice when dealing with a localisation task, the addition of
nIoL was used to ensure minimal overlap between the visual
features and other sentences for the location regression loss.
The latter is a significant problem with the used TACoS and
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Charades-STA datasets as the temporal sentence annotations
are dense and often directly follow each other.

3.1.3 Loss Functions

The multi-task loss-function consists of two loss-functions and
one hyper-parameter controlling the trade-off between the two.
The visual-semantic alignment score loss Laln, the clip location
regression loss Lreg and a weighting factor α:

L = Laln + αLreg (3.1)

The alignment loss encourages aligned clip-sentence pairs to
have positive scores and misaligned pairs to have negative
scores,

Laln =
1
N

N

∑
i=0

[αc log(1 + exp(−csi,i))+

N

∑
j=0,j 6=i

αw log(1 + exp(csi,j))]

(3.2)

where N is the batch size, csi,j is the alignment scores between
the sentence and video clip, αc and αw denote the weight of
positive (aligned) and negative (misaligned) examples respec-
tively. The regression loss Lreg is only calculated for the aligned
clip-sentence pairs,

Lreg =
1
N

N

∑
i=0

[R(t∗x,i − tx,i) + R(t∗y,i − ty,i)] (3.3)

where sentence sj contains the temporal start and end time,
τs

j and τe
j . The R(·) function is a smooth L1 function. For the

accurate temporal localisation, two configurations were tested,
a parameterised and non-parameterised version to predict the
centre and length of the action. Both cases are symbolised by
the x and y in the Lreg loss-function, which are represented by
p and l for the parameterised version,

tp = (p− pc)/lc, tl = log(l/lc) (3.4)

where p and l are the clip’s centre coordinate and clip length.
For the non-parameterised version x and y are represented by
s and e.

ts = s− sc, te = e− ec (3.5)

3.1.4 Evaluation Setup

The performance of the described model-architecture was mea-
sured on the TACoS and Charades-STA datasets in terms of
IoU ∈ {0.5, 0.3, 0.1} at recall@{1, 5} and compared to a ran-
dom baseline. The score was calculated as a percentage of
the overall sentences of which the IoU is larger than the given
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{0.5, 0.3, 0.1} ranked by IoU at the given recall cutoff {1, 5}.
The random baseline was created by randomly selecting n
windows from the test sliding windows of which the IoU at
the different recall cutoffs was then calculated. Therefore the
scoring function can be formalised as,

R(n, m) =
1
N

N

∑
i=1

r(n, m, si) (3.6)

where N is the total number of queries and R(·) is the average
performance among all sentences where the R@n (sorted in
descending order is higher) than the selected IoU@m given a
sentence si.

3.1.5 Observed Difficulties

Gao et al. (2017) mention that long query sentences increase the
chance of failure presumably due the sentence embeddings not
being discriminative enough. Significant performance losses
were observed going from word-level to sentence-level embed-
dings through a parameterised model (Long Short Term Mem-
mory (LSTM)) when compared to using pre-trained sentence-
level embeddings on a different task (Figure 3.2). The reason
Gao et al. (2017) give for this is the limited dataset size of only
127 videos. Therefore this limitation is inherently a dataset-size
problem rather than a modelling limitation. In the Background
Section (2.2.3) the problem of query drift was discussed in
which longer queries result in less discriminative sentence rep-
resentations. Although Gao et al. do not rely on matching
the UQ with a SQ as was the case in the work of De Boer
et al. (2017), still the same problem of query drift is likely to
occur as longer queries result in less discriminative feature-
representations due to the averaging over multiple words.

The second limitation that was mentioned is that when the
same motion was used but with different objects (e.g. putting a
cucumber or knife on a cutting board) the model had difficulty
in distinguishing the two. This indicates that additional focus
should be dedicated to the accurate localisation of specific ob-
jects in the visual representation. As a pre-trained CNN model
was used trained on the Sports1M dataset, this problem can
partially be accredited to the domain-shift going from the do-
main of sports to activities in homes which requires a different
feature-representation to separate the events effectively.

3.2 The Addition of Language in Action Lo-
calisation

Thus far in most approaches, visual input is being matched
with its language counterpart consisting of only a predefined
and small list of event-classes described in a single word. In
the models that are being used in these approaches, the visual
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input is used as input of the network with the target language
representation being represented using a one-hot-encoded rep-
resentation of the corresponding language "classes", therefore
greatly simplifying the language. To go from a well-constrained
representation of language to one that closely resembles nat-
ural language text, a few approaches frequently used in the
literature are discussed now.

3.2.1 From Words to Word-Embeddings

First, there is the problem of how to represent words; the
smallest meaningful token in language. For this, distributional
word embeddings are the industry standard in which words
are represented in an n-dimensional space in which the posi-
tion and distance between words can represent the different
semantic meanings of words and the relationships between
them respectively. These methods rely upon the distributional
hypothesis, words that occur in the same context tend to have
similar meanings, and are trained in an unsupervised matter.
Starting with word2vec2 that popularized this approach, and 2 Mikolov et al. (2013b)

many other adaptations that have been made over the years
including GloVe3 and lexvec4. 3 Pennington et al. (2014)

4 Salle et al. (2016)To evaluate the quality of the obtained word-embeddings,
intrinsic evaluation benchmarks and extrinsic evaluation methods
are used5. The former is the most popular method to com- 5 Jones and Galliers (1995)

pare language embedding quality as they are dependent upon
datasets which make them easy to compare different language
embeddings. Intrinsic evaluation benchmarks compare the
similarity scores of word-pairs within the embedding-space
of language embeddings to the human-based similarity scores
of the same word-pairs. If the similarity between word-pairs
within the language-embeddings corresponds with our own
judgment, a high intrinsic evaluation benchmark score can be
expected.

On the other hand in extrinsic evaluation tasks, the word-
embedding quality are evaluated on a direct down-stream per-
formance task such as the TALL-task which therefore makes
the quality of the embeddings dependent upon the usability
for a particular task. As no standardised down-stream perfor-
mance tasks exist, extrinsic evaluation tasks are not frequently
used to compare language embedding quality directly. In our
evaluation setup we both use intrinsic and extrinsic evaluation
methods, as intrinsic evaluation benchmark scores are gener-
ally faster to calculate and it is widely considered that extrinsic
and intrinsic evaluation benchmark scores are highly correlated.
Although recently questions have been raised whether this as-
sumption is indeed correct and not highly dependent upon
the actual task (Section 3.2.2). Now follows a more detailed
explanation of the different intrinsic evaluation categories.
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3.2.2 Intrinsic Evaluation Methods

Human-based similarity tasks can be divided into categorization-
, similarity- and analogy- based tasks that test different aspects
of the quality of word-embeddings relying on human-based
similarity measurements. Recently Bakarov (2018) provided
an overview of the specific ways DSM can be evaluated. For
completeness, the purpose of these tasks is mentioned below
as these will be later used in our evaluation setup.Figure 2: Accuracy reached by 3 different mod-

els optimizing word similarity on SimLex dataset.
Rightmost plot deptics performance of the tradi-
tionally used constant model. While NMT has
been reported to have strong performance on Sim-
Lex (as shown on the rightmost plot), its rela-
tive gains diminish under supervised version of
the benchmark (leftmost and central plot). Tested
embeddings (ordered by performance on the right-
most plot): NMT, GloVe300, HPCAautoenc.

3.1 Datasets and models

Datasets are divided into 4 categories: Similar-
ity, Analogy, Sentence and Single word. Analogy
datasets are composed of quadruples (two pairs
of words in a specific relation, for instance (king,
queen, man, woman)). Similarity datasets are
composed of pairs of words and assigned mean
rank by human annotators. Sentence and Single
word datasets have binary targets. In total our ex-
perimentation include 15 datasets:

• Similarity: SimLex999 [Hill et al., 2015],
MEN [Bruni et al., 2014], WordSimilar-
ity353 [Finkelstein et al., 2001] and Rare
Words [Luong et al., 2013].

• Analogy: 4 categories from WordRep [Gao
et al., 2014]4.

• Sentence: Stanford Sentiment Tree-
bank [Socher et al., 2013] and News20
(3 binary datasets) [Tsvetkov et al., 2015a].

• Single word: Datasets constructed from lexi-
cons collected in [Faruqui and Dyer, 2015b]:
POS tagging (3 datasets for verb, noun and
adjective), word sentiment (1 dataset), word
color association (1 dataset) and WordNet
synset membership (2 datasets).

Models for each datasets include both non-
linear and linear variants. When model is non-

4We experimented with MSR and Google datasets and ob-
served that models easily overfit if the train and test sets share
the same words (not 3-tuples). WordRep dataset is a set of
pairs which we split into disjoint sets.

linear, for robustness we include in search a fall-
back to a simpler linear or constant model. Addi-
tionally, in the case of Similarity and Analogy we
include commonly used constant models. Similar-
ity between 2 vectors is approximated by their co-
sine similarity (cos(~v1, ~v2)). In the case of Anal-
ogy tasks embedding is evaluated for its ability
to infer 4th word out from the first three and we
use the following well-known constant models:
3COSADD (argmax~v∈V cos(~v, ~v2− ~v1+ ~v3)) and
3COSMUL (argmax~v∈V

ccos(~v, ~v3)ccos(~v, ~v2)
ccos(~v, ~v1)+ε

)5. For
each task class we evaluate a different set of clas-
sifiers:

• Similarity: cosine similarity, Random Forest
(RF), Support Vector Regression (SVR) with
RBF kernel6.

• Analogy: 3COSADD, 3COSMUL [Levy
et al., 2015] and regression neural network
(performing regression on the 4th word given
the rest of the quadruple, see Appendix for
further information).

• Sentence: Logistic Regression, Support Vec-
tor Machine (SVM) with RBF kernel tak-
ing as input averaged embedding vector and
Convolutional Neural Network (CNN) [Kim,
2014] taking as input concatenation of em-
bedding vectors.

• Single word: RF, SVM (with RBF kernel),
Naive Bayes, k-Nearest Neighbor Classifier
and Logistic Regression.

3.2 Embeddings
Our objective was to cover representatives of em-
beddings emerging from both shallow and deeper
architectures. Deep embeddings are harder to
train, so for the scope of this paper we decided to
include pretrained and publicly available vectors7.
Setup includes following “shallow” pretrained em-
beddings: GloVe (100 and 300 dimensions) [Pen-
nington et al., 2014], Hellinger PCA (HPCA) [Le-
bret and Collobert, 2014], PDC (100 and 300 di-
mensions) and HDC (300 dimensions) [Sun et al.,
2015], Additionally following “deep” embeddings
are evaluated: Neural Translation Machine (NMT,

5ccos(~v1, ~v2) =
1+cos( ~v1, ~v2)

2
6We also tried RankSVM [Lee and Lin, 2014], but it did

not perform better than other models, while being very com-
putationally intensive.

7Vocabularies were lowercased and intersected before
perfoming experiments. Vectors were normalized to a unit
length.

Figure 3.4: Differences in performance obtained on
the SimLex intrinsic evaluation benchmark of NMT
(yellow), GloVe_300 (blue) and HPCA (green) lan-
guage embeddings under different percentages of
the training data. On the vertical axis is the per-
formance on the task as discussed in the work of
Jastrzebski et al. (2017). In supervised-versions of
the benchmark (left) one can see that GloVe out-
performs the other language embeddings with in-
creased dataset sizes while in the unsupervised
version (right) this is not the case. This is used
as an argument for using a quantitative metric to
denote the ease of KT as an evaluation criterion
for language embeddings. Figure reproduced from
Jastrzebski et al. (2017).

However, it should be mentioned that concerns regarding
intrinsic evaluation methods have recently been raised6,7,8.

6 Schnabel et al. (2015)
7 Faruqui et al. (2016)
8 Jastrzebski et al. (2017)

Specifically, whether the evaluation of word-embeddings qual-
ity should not be shifted from intrinsic evaluation bench-
marks towards extrinsic evaluation benchmarks. As for most
use-cases the amount of training data is limited and word-
embeddings are mostly being used with minimal fine-tuning,
Jastrzebski et al. (2017) argue that a quantitative measurement
is needed to indicate the ease in which knowledge can be
transferred to a particular task of interest (see Figure 3.4). In
addition, they argue that additional performance metrics are
required that indicate the ability of language embeddings to
perform well under tasks that require increasingly more non-
linear models which make the transfer of knowledge increasing
more difficult.

Categorization-based tasks include; BLESS9, AP10, BAT- 9 Baroni and Lenci (2011)
10 Almuhareb (2006)TIG11 and ESSLI12.
11 Baroni and Lenci (2010)
12 Bullinaria (2008)

In categorisation tasks, the objective is to evaluate the word-
embeddings quality regarding their ability to accurately cap-
ture the semantic groups they are located in. For example,
whether a variety of animals are clustered tightly together in
semantic space. One example of the inner workings of these
methods is now given.

BLESS consists of 200 concepts containing single-word nouns
with relationships to other words. These relationships include
COORD (hyponym), HYPER (hypernym), MERO (part of),
ATTRi (attribute of), EVENT (an event the concept is involved
in) or RAN (random pairing similarity score). The cosine sim-
ilarity scores between these word-pairs are calculated to test
to which extent these embeddings capture these relationships.
A high cosine-similarity is desirable for all word-pairs in the
different groups except RAN, which behaves like a control
group that should have low cosine similarity scores as this
group consists of fixed random word-pairs.

Similarity-based tasks include; MEN13, MTurk14, RG65
15, 13 Bruni et al. (2014)

14 Radinsky et al. (2011)
15 Rubenstein and Goodenough (1965)

RW16, SimLex17, WS353, WS353R and WS353S18.

16 Luong et al. (2013)
17 Hill et al. (2015)
18 Finkelstein et al. (2002)

These datasets rely on human heuristic judgments of the
actual semantic distances between words. Bakarov (2018) pro-
vide an overview of the advancements of the similarity-based
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datasets. In these datasets, for instance, the word cup and mug
should be semantically similar which is indicated on a scale
between 0 and 1. A human assessor is given a set of pairs
and is asked to rate the degree of similarity, for example, the
aforementioned pair could have received a similarity score of
0.8. As such, these methods towards obtaining a similarity
score have been criticised for their subjective nature, but still
are the most popularly used intrinsic evaluation metrics. In
specific, what defines semantic similarity between words can
according to Gladkova and Drozd (2016) be based on up to 50

potential linguistic, psychological and social factors.

Analogy-based tasks include; Google19, MSR20, SemEval21. 19 Mikolov et al. (2013a)
20 Mikolov et al. (2013c)
21 Jurgens et al. (2012)

In an analogy task, the objective is to test whether the ob-
tained semantic embeddings and the relationships between
words contain certain relations that allow for arithmetic opera-
tions. The most famous example of arithmetic operations come
from the Word2Vec paper created by Mikolov et al. (2013c) in
which the example is given vector(”King”)− vector(”Man”) +
vector(”Woman”) = vector(”Queen”). The main criticism here
is that there is no precise evaluation metric on how to measure
this22. 22 Bakarov (2018)

An example is the SemEval task in which the objective is
to determine the degree to which the semantic relationships
between word pairs (e.g. A:B, C:D) are similar to each other.
Humans were asked to rate the similarity between relationships
between two words-pairs. These scores were subsequently
used to test whether this similarity was also observed between
word-pairs in word-embeddings as a measurement for word-
embedding quality.

Figure 3.5: An example of the method used by
Jurgens et al. (2012) to construct the dataset for
the anology task; SemEval. Based on the human-
obtained answers the extend to which the language
embeddings are consistent with these findings are
used as a measurement for success.

3.3 GraphSAGE
Hamilton et al. (2017) introduced a method called GraphSAGE
which stands for SAmple and aggreGatE, that relies upon in-
ductive representation learning on large graphs by learning
a function that generates embeddings by sampling and ag-
gregating features from a node’s local neighbourhood. The
inductive nature of this method allows generalising to unseen
nodes or even complete graphs during testing, which is not
possible in a transductive approach. However, in order for an
inductive framework to work properly, both the node’s local
and global role in the graph needs to be encoded. This is
a computationally challenging task and requires a variety of
sampling methods for speed-up23. 23 Hamilton et al. (2017)

In Figure 3.6 a global overview of the GraphSAGE method
is shown. First (1), only a sample of the edges is taken to rep-
resent the local neighbourhood (light red) of a particular node
of interest (dark red). Second (2), a chosen aggregator function
aggregates information for up to n hops away. In the shown
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figure the aggregation of information across two hops is shown
which are both learned by a parameterised model (e.g. LSTM)
where each aggregator function at a distance n is learned sep-
arately but is shared across all nodes. Lastly (3), with this
aggregated feature representation both the reconstruction of
the local neighbourhood is attempted to be maximised which
can include an added node feature representation which in our
case are language embeddings. At step (3) one can observe
that the obtained feature-representation (the label) of the node
should include information about the entire graph. It should
be noted that for the GraphSAGE algorithm edges do not have
a direction, and instead the arrows in Figure 3.6 refer to the
direction of the discussed operations in step (1) and (2).

Figure 1: Visual illustration of the GraphSAGE sample and aggregate approach.

recognize structural properties of a node’s neighborhood that reveal both the node’s local role in the
graph, as well as its global position.

Most existing approaches to generating node embeddings are inherently transductive. The majority
of these approaches directly optimize the embeddings for each node using matrix-factorization-based
objectives, and do not naturally generalize to unseen data, since they make predictions on nodes in a
single, fixed graph [5, 11, 23, 28, 35, 36, 37, 39]. These approaches can be modified to operate in an
inductive setting (e.g., [28]), but these modifications tend to be computationally expensive, requiring
additional rounds of gradient descent before new predictions can be made. There are also recent
approaches to learning over graph structures using convolution operators that offer promise as an
embedding methodology [17]. So far, graph convolutional networks (GCNs) have only been applied
in the transductive setting with fixed graphs [17, 18]. In this work we both extend GCNs to the task
of inductive unsupervised learning and propose a framework that generalizes the GCN approach to
use trainable aggregation functions (beyond simple convolutions).

Present work. We propose a general framework, called GraphSAGE (SAmple and aggreGatE), for
inductive node embedding. Unlike embedding approaches that are based on matrix factorization,
we leverage node features (e.g., text attributes, node profile information, node degrees) in order to
learn an embedding function that generalizes to unseen nodes. By incorporating node features in the
learning algorithm, we simultaneously learn the topological structure of each node’s neighborhood
as well as the distribution of node features in the neighborhood. While we focus on feature-rich
graphs (e.g., citation data with text attributes, biological data with functional/molecular markers), our
approach can also make use of structural features that are present in all graphs (e.g., node degrees).
Thus, our algorithm can also be applied to graphs without node features.

Instead of training a distinct embedding vector for each node, we train a set of aggregator functions
that learn to aggregate feature information from a node’s local neighborhood (Figure 1). Each
aggregator function aggregates information from a different number of hops, or search depth, away
from a given node. At test, or inference time, we use our trained system to generate embeddings for
entirely unseen nodes by applying the learned aggregation functions. Following previous work on
generating node embeddings, we design an unsupervised loss function that allows GraphSAGE to be
trained without task-specific supervision. We also show that GraphSAGE can be trained in a fully
supervised manner.

We evaluate our algorithm on three node-classification benchmarks, which test GraphSAGE’s ability
to generate useful embeddings on unseen data. We use two evolving document graphs based on
citation data and Reddit post data (predicting paper and post categories, respectively), and a multi-
graph generalization experiment based on a dataset of protein-protein interactions (predicting protein
functions). Using these benchmarks, we show that our approach is able to effectively generate
representations for unseen nodes and outperform relevant baselines by a significant margin: across
domains, our supervised approach improves classification F1-scores by an average of 51% compared
to using node features alone and GraphSAGE consistently outperforms a strong, transductive baseline
[28], despite this baseline taking ∼100× longer to run on unseen nodes. We also show that the new
aggregator architectures we propose provide significant gains (7.4% on average) compared to an
aggregator inspired by graph convolutional networks [17]. Lastly, we probe the expressive capability
of our approach and show, through theoretical analysis, that GraphSAGE is capable of learning
structural information about a node’s role in a graph, despite the fact that it is inherently based on
features (Section 5).

2

Figure 3.6: Illustration of how the local neighbour-
hood of a node is sampled (1) after which the node
feature representation is aggregated (2) and an un-
supervised loss is applied in (3) that attempts to
reconstruct the local neighbourhood. Figure repro-
duced from Hamilton et al. (2017).

The method of Hamilton et al. (2017) was validated on
feature-rich graphs including; citation graphs, Reddit and Pro-
tein to Protein Interaction (PPI), which contain a relatively high
amount of links per node (the average node degree) compared
to the average KBs. As a result, ConceptNet which is further
discussed in Section 5.2.1, is different in the sense that the
average node degree is significantly lower and arguably the
direction of the relationships are of importance. For example
the edge-relationship type "owned by" is non-symmetric. An
example of the difference between directional and undirec-
tional edges is shown in Figure 3.8 and 3.9 respectively. An
additional difference is that ConceptNet is significantly larger
than the aforementioned graphs.

The connectivity sparsity of ConceptNet could potentially
be offset by the fact that nodes can be given additional node
feature-representations in the GraphSAGE algorithm which
allows the possibility to add distributional word-embedding
node-feature representations. This could potentially uplift part
of the connection sparsity of ConceptNet as the feature-rich
word-embeddings allows relating all words (≈nodes in Con-
ceptNet) in a 300-dimensional space. Also, Kipf and Welling
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(2016) showed earlier that only a limited speed-up was ob-
served going from CPU to GPU for GC-based approaches,
possibly allowing large networks to be trained on CPU without
significantly increased training time.

Published as a conference paper at ICLR 2017

6.3 TRAINING TIME PER EPOCH
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Figure 2: Wall-clock time per epoch for random
graphs. (*) indicates out-of-memory error.

Here, we report results for the mean training
time per epoch (forward pass, cross-entropy
calculation, backward pass) for 100 epochs on
simulated random graphs, measured in seconds
wall-clock time. See Section 5.1 for a detailed
description of the random graph dataset used
in these experiments. We compare results on
a GPU and on a CPU-only implementation4 in
TensorFlow (Abadi et al., 2015). Figure 2 sum-
marizes the results.

7 DISCUSSION

7.1 SEMI-SUPERVISED MODEL

In the experiments demonstrated here, our method for semi-supervised node classification outper-
forms recent related methods by a significant margin. Methods based on graph-Laplacian regular-
ization (Zhu et al., 2003; Belkin et al., 2006; Weston et al., 2012) are most likely limited due to their
assumption that edges encode mere similarity of nodes. Skip-gram based methods on the other hand
are limited by the fact that they are based on a multi-step pipeline which is difficult to optimize.
Our proposed model can overcome both limitations, while still comparing favorably in terms of ef-
ficiency (measured in wall-clock time) to related methods. Propagation of feature information from
neighboring nodes in every layer improves classification performance in comparison to methods like
ICA (Lu & Getoor, 2003), where only label information is aggregated.

We have further demonstrated that the proposed renormalized propagation model (Eq. 8) offers both
improved efficiency (fewer parameters and operations, such as multiplication or addition) and better
predictive performance on a number of datasets compared to a naı̈ve 1st-order model (Eq. 6) or
higher-order graph convolutional models using Chebyshev polynomials (Eq. 5).

7.2 LIMITATIONS AND FUTURE WORK

Here, we describe several limitations of our current model and outline how these might be overcome
in future work.

Memory requirement In the current setup with full-batch gradient descent, memory requirement
grows linearly in the size of the dataset. We have shown that for large graphs that do not fit in GPU
memory, training on CPU can still be a viable option. Mini-batch stochastic gradient descent can
alleviate this issue. The procedure of generating mini-batches, however, should take into account the
number of layers in the GCN model, as the K th-order neighborhood for a GCN with K layers has to
be stored in memory for an exact procedure. For very large and densely connected graph datasets,
further approximations might be necessary.

Directed edges and edge features Our framework currently does not naturally support edge fea-
tures and is limited to undirected graphs (weighted or unweighted). Results on NELL however
show that it is possible to handle both directed edges and edge features by representing the original
directed graph as an undirected bipartite graph with additional nodes that represent edges in the
original graph (see Section 5.1 for details).

Limiting assumptions Through the approximations introduced in Section 2, we implicitly assume
locality (dependence on the K th-order neighborhood for a GCN with K layers) and equal impor-
tance of self-connections vs. edges to neighboring nodes. For some datasets, however, it might be
beneficial to introduce a trade-off parameter λ in the definition of Ã:

Ã = A+ λIN . (11)
4Hardware used: 16-core Intel R© Xeon R© CPU E5-2640 v3 @ 2.60GHz, GeForce R© GTX TITAN X

8

Figure 3.7: A near linear increase in computa-
tional time is observed when the number of edges
increases with minimal difference between GPU
and CPU time. Figure reproduced from Kipf and
Welling (2016).

e

v

Figure 3.8: Illustration of a graph where all the
edges are of the same relation. From a model-
ing perspective, Hamilton et al. (2017) considers
all edge-types equal and without directionality.

emrd

v

Figure 3.9: Illustration of a graph where there are
different edge-relations of which the directionality
is important. Many graphs belong into this category,
including ConceptNet and ImageNet.

Hamilton et al. (2017) extend GCNs to the task of induc-
tive unsupervised graph learning and propose a framework
that generalises the GC approach to use trainable aggrega-
tion functions beyond simple convolutions. In Algorithm 1

one can observe the pseudo-code in which the embeddings
z are obtained for each node which represents a word in the
English vocabulary. Therefore this is considered the forward
propagation as it is not updating the parameters of the model
yet.

Algorithm 1 GraphSAGE embedding generation (i.e. forward
propagation) algorithm

Input : Graph G(V , E); input features {xv, ∀k ∈ V}; depth
K; weight matrices Wk, ∀k ∈ {1, . . . , K}; non-
linearity σ; differentiable aggregators functions
AGGREGATEk, ∀k ∈ {1, . . . , K}; neighborhood
function N : v→ 2V

Output : Vector representations zv for all v ∈ V
1: h0

v ← xv, ∀v ∈ V
2: for k = 1 . . . K do
3: for v ∈ V do
4: hk

N (v) ← AGGREGATEk({hk−1
u , ∀u ∈ N (v)})

5: hk
v ← σ(Wk · CONCAT(hk−1

v , hk
N (v)))

6: hk
v ← hk

v/||hk
v||2, ∀v ∈ V

7: zv ← hK
v , ∀v ∈ V

A step-by-step explanation of the feed-forward algorithm is
given below with the line number indicated between brackets.
The input of the model is a graph G consisting of vertices V and
edges E , together with a feature representation of xv∀v ∈ V .
First, at the start of the algorithm (1) the node feature repre-
sentations are taken as the original representation of v called
h. One can interpret k as the time-step or number of hops the
representation of node v is dependent on. At time-step 0, the
representation therefore only consists of the node-features and
no local neighbourhood information is incorporated yet. There-
after, for search depth K, the local neighbourhood of the node
of interest v is aggregated with increasing depths (4). This
is accomplished by for example taking the average-aggregator
function that takes the mean of the neighbourhood region.
Thereafter the initial and the current feature-representation
are concatenated and weighted by W that is different per k
after which a non-linearity function is applied (5). This can be
considered a skip-connection between the current and previ-
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ous hop. Lastly, the feature representations of the nodes are
individually l2-normalised at each time step k (6) that at the
last time-step K results in the latent feature representation zv.

To guaranty that each mini-batch has the same memory
requirements to allow for faster training, the neighbourhood
function N was capped at a user-defined parameter S. There-
fore the time complexity of this algorithm is O(∏K

i=1 Si), where
Si denotes the maximum number of connections allowed at
search-depth i. Hamilton et al. (2017) empirically found that
the parameter-settings K = 2 and S1 · S2 ≤ 500 performed best
for the datasets that were used.

3.3.1 Training

An unsupervised loss-function was used that enforces closely
connected nodes to have similar representations while dis-
parate nodes have highly distinct representations. For this,
the output representations of the nodes obtained at the end
of Algorithm 1 was used with trainable parameters Wk. For
positive examples, a random node v is sampled in the neigh-
bourhood of n edges apart of v while for the negative examples
Q examples are sampled from a distribution called Pn which
is the negation of the previous set,

JG(zu) = − log(σ(zT
u zv))−Q · E

vn∼Pn(v)
log(σ(−zT

u zvn)) (3.7)

As the latent node representations z have been l2 normalised,
the dot product between either similar (v within the neighbour-
hood) nodes or dissimilar nodes (v outside neighbourhood) are
1 and -1 under ideal circumstances respectively. The sigmoid
function after that normalises these values between 0 and 1

after which a log is applied for numerical stability.

3.3.2 Aggregators

GraphSAGE provides four different aggregator functions, GC,
mean, LSTM, pool, which all obtain relatively similar perfor-
mance on their datasets24. The differences in running time of 24 Hamilton et al. (2017)

these aggregators can be seen in Figure 3.10.

Table 1: Prediction results for the three datasets (micro-averaged F1 scores). Results for unsupervised
and fully supervised GraphSAGE are shown. Analogous trends hold for macro-averaged scores.

Citation Reddit PPI

Name Unsup. F1 Sup. F1 Unsup. F1 Sup. F1 Unsup. F1 Sup. F1

Random 0.206 0.206 0.043 0.042 0.396 0.396
Raw features 0.575 0.575 0.585 0.585 0.422 0.422
DeepWalk 0.565 0.565 0.324 0.324 — —
DeepWalk + features 0.701 0.701 0.691 0.691 — —
GraphSAGE-GCN 0.742 0.772 0.908 0.930 0.465 0.500
GraphSAGE-mean 0.778 0.820 0.897 0.950 0.486 0.598
GraphSAGE-LSTM 0.788 0.832 0.907 0.954 0.482 0.612
GraphSAGE-pool 0.798 0.839 0.892 0.948 0.502 0.600

% gain over feat. 39% 46% 55% 63% 19% 45%

Figure 2: A: Timing experiments on Reddit data, with training batches of size 512 and inference
on the full test set (79,534 nodes). B: Model performance with respect to the size of the sampled
neighborhood, where the “neighborhood sample size” refers to the number of neighbors sampled at
each depth for K = 2 with S1 = S2 (on the citation data using GraphSAGE-mean).

4.1 Inductive learning on evolving graphs: Citation and Reddit data

Our first two experiments are on classifying nodes in evolving information graphs, a task that is
especially relevant to high-throughput production systems, which constantly encounter unseen data.

Citation data. Our first task is predicting paper subject categories on a large citation dataset. We
use an undirected citation graph dataset derived from the Thomson Reuters Web of Science Core
Collection, corresponding to all papers in six biology-related fields for the years 2000-2005. The
node labels for this dataset correspond to the six different field labels. In total, this is dataset contains
302,424 nodes with an average degree of 9.15. We train all the algorithms on the 2000-2004 data
and use the 2005 data for testing (with 30% used for validation). For features, we used node degrees
and processed the paper abstracts according Arora et al.’s [2] sentence embedding approach, with
300-dimensional word vectors trained using the GenSim word2vec implementation [30].

Reddit data. In our second task, we predict which community different Reddit posts belong to.
Reddit is a large online discussion forum where users post and comment on content in different topical
communities. We constructed a graph dataset from Reddit posts made in the month of September,
2014. The node label in this case is the community, or “subreddit”, that a post belongs to. We sampled
50 large communities and built a post-to-post graph, connecting posts if the same user comments
on both. In total this dataset contains 232,965 posts with an average degree of 492. We use the first
20 days for training and the remaining days for testing (with 30% used for validation). For features,
we use off-the-shelf 300-dimensional GloVe CommonCrawl word vectors [27]; for each post, we
concatenated (i) the average embedding of the post title, (ii) the average embedding of all the post’s
comments (iii) the post’s score, and (iv) the number of comments made on the post.

The first four columns of Table 1 summarize the performance of GraphSAGE as well as the baseline
approaches on these two datasets. We find that GraphSAGE outperforms all the baselines by a
significant margin, and the trainable, neural network aggregators provide significant gains compared

7

Figure 3.10: An overview of the training- and
testing-time of the different aggregator functions.
DW stand for DeepWalk which is one of the bench-
mark methods used by Hamilton et al. for com-
parison. Figure reproduced from Hamilton et al.
(2017).

Mean Aggregator The mean aggregator function is for-
malised as;

hk
v ← σ(W ·MEAN({hk−1

v } ∪ {hk−1
u , ∀u ∈ N (v)})) (3.8)

As a result, the pseudocode on line 5 in Algorithm 1 is altered
and instead of applying the concatenation of node averages,
the node feature representations are averaged.

LSTM Aggregator The LSTM network architecture can ex-
press more information than the mean aggregator function
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potentially can. However, due to the sequential nature of
LSTM’s which are not in accordance with the unordered neigh-
bourhood, Hamilton et al. adapt LSTMs to work on a random
permutation of the node’s neighbourhood.

Pooling Aggregator This symmetric and trainable aggre-
gator function feeds each neighbour’s vector independently
through a fully connected neural network after which an
element-wise max-pooling operation is applied to aggregate
the information.

AGGREGATEpool
k = max(σ(Wpoolh

k
ui
+ b), ∀ui ∈ N (v) (3.9)

For more details on their code implementation of the afore-
mentioned aggregator functions we defer to their working
implementation on github.

3.3.3 Sampling

As the distribution of edges per node is highly skewed, Hamil-
ton et al. sample only some edges for each node before feeding
them into the GraphSAGE algorithm. In particular, a maxi-
mum degree of 128 per edge was sampled pre-training while
sampling only 25 neighbours of those during training. The
downsampling of edges allows the storage of the node neigh-
bourhood information as dense adjacency lists pre-training,
which drastically improves computational efficiency during
training as minimal lookup time is required during training.

3.4 Zero-shot Learning
In our introduction, we hypothesised that a high zero-shot
performance was beneficial for the task of event-localisation
given natural language text. In the upcoming section, we
formalise zero-shot learning and end with recommendations of
Xian et al. (2017) towards better zero-shot evaluation practices.

In zero-shot learning the objective is to learn a classifier
f : X → Y that can predict unseen classes in Y that were not in
the training set. Formally this means that given a training set
S = (xn, yn), n = 1 . . . N and yn ∈ Y train, the aim is to learn a
function f : X → Y by minimizing a loss-function:

L(yn, f (xn;W)) + λ(W)

where λ(·) being a regularization term and

f (x;W) = argmaxy∈YF(x, y;W)

is maximizing the likelihood of y given the model parameters
W . What is different from a typical machine learning setting
is that during testing unseen classes are given to the model
yn ∈ Y test with Ytest ∩Ytrain = ∅ and the aim is to still correctly
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predict the y label for the test-set. Zero-shot learning settings
are especially important in cases that (1) Y can take many
values and (2) the cost of obtaining labeled examples is high25. 25 Palatucci et al. (2009)

The cross-modality learning between language and vision for
the localisation of events falls under these criteria due to (1) the
language domain contains many words with many complex
relationships between them while (2) temporally annotated
datasets are rare due to the high labeling cost26. Therefore 26 Dai et al. (2017), Ma et al. (2017)

these two factors make event-localisation given natural lan-
guage text to a large extend a zero-shot learning problem.

Despite the increased popularity of zero-shot learning, a
comparison between zero-shot methods remains difficult due
to the absence of unified bench-marking methods27. In spe- 27 Xian et al. (2017)

cific, most methods use their own test and training set split
on popular zero-shot evaluation datasets which make direct
comparisons difficult. Moreover, zero-shot methods that rely
upon pre-trained visual representations frequently violate the
Y test ∩Y train = ∅ constraint as they contain classes in the train
set that are either close or exactly equal to the classes in the test-
set. By replicating the work of recent zero-shot methods with
test-set splits of popular evaluation benchmarks that do not
contain training set classes, Xian et al. show that some methods
achieve significant performance losses while others even bene-
fit from the proposed split further stressing the importance of a
proper training and test-set split. This demonstrates that extra
care is needed towards constructing training and test-set splits
especially when pre-trained visual representations are used on
a different task. This also becomes important in Section 4.3
where we create our own general zero-shot dataset based on
ImageNet.

Arguably, most zero-shot evaluation methods focus on nar-
row zero-shot performance by focusing on images within a
narrow domain and only a few image classes28 instead of fo- 28 e.g. birds - CUB Welinder et al. (2010), scenes

- SUN Patterson and Hays (2012), animals - AWA
Lampert et al. (2014), objects - aPy Farhadi et al.
(2009)

cusing on large-scale zero-shot performance that is presumably
beneficial for the TALL-task. Rohrbach et al. (2011) provide a
first in-depth study towards knowledge transfer and zero-shot
learning in a large-scale setting by focusing on the ImageNet
dataset as a method to obtain a wide-scale zero-shot perfor-
mance score. For the representation of language, the synset
definitions originating from WordNet were used for attribute
mining to combine the vision and language modality and use
these attributes to generalise even to unseen classes. To cir-
cumvent the sparsity that occurs when only directly matching
overlapping attributes between textual descriptions, instead the
semantic relatedness between the mined attributes was calculated
to improve relating the different attributes and therefore tex-
tual descriptions to each other. Rohrbach et al. (2011) state that
it remains questionable whether the performance that is ob-
tained using algorithms operating within narrow domains also
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scale to larger number of classes and training data. Rohrbach
et al. conclude with showing that by exploiting the hierarchy
of the WordNet hierarchy for obtaining semantic relatedness
between classes, zero-shot classification performance improved
when compared to attribute mining using a direct similarity
approach. In our approach the hierarchy of ConceptNet is
used in the hope of observing a similar result.

3.4.1 Zero-Shot Evaluation Metrics

For the evaluation of zero-shot performance, recently Xian et al.
(2017) propose to use the per-class averaged top-1 accuracy if
the dataset is not well balanced with respect to the number
of images per class and argue that demonstrating zero-shot
performance on small or coarse-grained datasets are not rec-
ommended. Instead, they recommend to abstract away from
the restricted nature of zero-shot evaluation and make the task
more practical by also including training classes in the search
space, which make it equal to a GZSL task-setting. In addition,
Xian et al. (2017) recommend using multiple test-set splits to
decrease the amount of variance.

For GZSL it is common practice to compute the harmonic
mean of training and test-set accuracies,

H = 2 ∗ (accY tr ∗ accY ts)/(accY tr + accY ts) (3.10)

In comparison to harmonic mean, the arithmetic mean is more
affected by high training set accuracies and is therefore not
recommended as the test-set accuracies tend to be considerably
lower. As a result in our work we include training classes in
our evaluation benchmark as discussed in Section 5.1.3. Instead
of reporting the harmonic mean, however, we report both the
train and test-set accuracies and leave further calculations to
the reader.
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4 Methods
Whereas in the Background Section (2) a general overview was
provided of the literature that helped shape our view upon the
problem of event-localisation in videos and in Related Work
the GraphSAGE and TALL model architecture was outlined as
they are essential to the work presented here, in this section we
provide a general overview of the methodology used in this
work.

We start with giving a formal problem-statement of the
TALL-task (4.1), after which we provide an outline of our
approach (4.2). Thereafter we go in-depth to each of our in-
dividual experiments by starting off with their relation to the
research questions as formulated in the Introduction (1.4) after
which we provide a more detailed overview of the methods.
The same structure is adhered to in the following Experimen-
tal Setup Section (5) in which the implementation details are
discussed.

4.1 Problem Formulation
Given a video V, consisting of T frames f T

t=1 and temporal
sentence annotations A = {sj, τs

j , τe
j }M

j=1 with M sentences
where superscript s and e denote the start and ending time
of the event described in text s, the objective is to predict
the temporal boundaries (τs, τe) of a particular event sj of a
given V. The models’ input are corresponding sentence and
video pairs and the output are the temporal boundaries that
correspond to the event the sentence refers to. For our purpose
the feature representation of vision and language are fixed.

This is a similar task description as first described in Gao
et al. (2017) which called this the TALL-task. Gao et al. mainly
focus on obtaining an appropriate model design that allows for
learning a cross-modal embedding space E in which language
T and vision V can be matched, here we solely attempt to
improve the language representation T inline with our hy-
pothesis to enhance the alignment between the two modalities
such that even accurate matching can take place for zero-shot
use-cases.

4.2 Overview of Experiments
In this work, an attempt is made to improve upon the repre-
sentation of language specifically for the TALL down-stream
performance task in which natural language text is used. As
argued, embeddings for this particular task should hypotheti-
cally be (1) more prominently centred around the functional
roles objects take part in while also emphasising on relations
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that have clear visual correspondences, while (2) also allowing
for the transfer of knowledge between the linguistic and visual
domain. As argued this makes it close to a general zero-shot
task-setting in which high performance on both the train and
test-set vocabulary is essential.

To incorporate (1) and take into considerations (2), the rela-
tional knowledge available in KBs were combined with distri-
butional semantic approaches. As knowledge bases are incom-
plete and are frequently having only a few relationships per
entity, learning embeddings solely from relational knowledge
was assumed to be too sparse. Our approach is built upon
two realisations. First, nodes in ConceptNet are represented
by concepts which can be seen as a link to their distributional
embedding word-representation allowing nodes to be enriched
with these embeddings. Second, recently unsupervised GCNs
have been proposed to create individual node-representations
by aggregating the local neighbourhood information into a low
dimensional space similar to DSM. Specifically GraphSAGE1, 1 Hamilton, W., Ying, Z., and Leskovec, J. (2017).

Inductive representation learning on large graphs.
In Advances in Neural Information Processing Systems,
pages 1025–1035

an inductive framework that leverages node feature informa-
tion and local neighbourhoods to obtain node embeddings
for large knowledge graphs, was considered useful for this
particular task.
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Figure 4.1: An example of how GraphSAGE can be
applied upon ConceptNet. W in yellow represents
word-embeddings, V represents a visual represen-
tation. In red are the verbs and in green are the
adjectives. Arrows indicate either undirected (e.g.
related_to) or directed edges (used_for). This figure il-
lustrates that for some concepts there are visual and
textual correspondences whereas for others there
is not. This possibly allows to relate unrelated to
related concepts, ideal for zero-shot use-cases.

The hypothetically more structured embeddings trained
with GCNs on a KB could improve the GZSL task performance
as it would allow to more systematically transfer knowledge
from the known visual-language correspondences during train-
ing to unseen visual and linguistic examples during testing. In
Figure 4.1 an example is given of the potential of this approach
using an actual sub-graph available in ConceptNet. The yel-
low w indicates that for this particular concept in ConceptNet
a corresponding DSM word-embedding representation was
found in the vocabulary. This feature node-representation was
therefore added to the graph to partially neglect the sparsity
of the relationships in ConceptNet. The blue v indicates that
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a matching visual image-feature was found for the particular
concept of interest which consequently forms a text-visual cor-
respondence that is used to obtain a cross-modal embedding
space only after the language embeddings are obtained using
GraphSAGE.

During the training of GraphSAGE not all concepts had a
matching language representation, while during the training of
the cross-modal embedding space not all nodes contained vi-
sual correspondences. The structure of the graph can therefore
help here in two distinct ways. First, an accurate language rep-
resentation for concepts without language-representation can
still be obtained using GraphSAGE by aggregating information
from the local neighbourhood. Second, the more structured
language embeddings that were expected to be obtained us-
ing this approach could hypothetically be used to better align
vision and text even for ZSL use cases. For example, only
knowing which relationships a concept has can already tell a
lot about its functionality, which is frequently visually reflected
by its shape or form.

The relationships in ConceptNet and the frequency thereof
are shown in Figure 4.2. Here one can observe that a significant
part of relations is related to hypernyms and hyponyms (isa,
partof, formof), synonyms and antonyms, or functional roles
(e.g. usedfor, atlocation, hassubevent, capableof, hasproperty).
These relations could be important for the creation of language
embeddings specifically for the task of event-localisation as
they are centred around function with often clear visual corre-
spondences. Knowledge transfer can also be enhanced by for
example knowing that a Chihuahua dog is a more fine-grained
example of the class dog. Given that visual-linguistic correspon-
dences are known for the class dog in, for example, ImageNet
could be exploited by requiring that their representations must
be close to each other in semantic space.

Our approach can be subdivided in three experiments. The
first experiment is designed to test to which extend popular
language embeddings are already suited to be used to train
a cross-modal embedding space in which seen and unseen
language and visual correspondences can be matched during
test-time in a GZSL-setting. For this, a new zero-shot dataset is
created that exploits the ImageNet hierarchy to enforce that the
synsets in the train and test-set are sufficiently distinct while
also benefiting from the wide variety of objects and number
of image-examples available in ImageNet. The textual descrip-
tions of the synset (.e.g dog) are subsequently matched with the
vocabulary of the language embeddings after which a model
is trained that projects the visual-representation close to their
respective language-representation. The obtained cross-modal
embedding space is subsequently used to evaluate the model’s
ability to give higher similarity scores to matching visual and
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Figure 4.2: Frequency of edge-relationships in Con-
ceptNet. Based on the final selection of concepts
from ConceptNet.text correspondences. The model’s ability to rank the similar-

ity of corresponding visual and textual representations higher
than non-corresponding ones is used as a measurement for
zero-shot performance. This zero-shot performance metric is
then later compared to the downstream performance task in
Experiment III in order to determine whether there is a positive
correlation between the two (RQ3).

In the second experiment, embeddings are trained specif-
ically with our hypothesis in mind that embeddings trained
with an emphasis on zero-shot use-cases and visually grounded
relationships perform better in the TALL-task. For this, Con-
ceptNet is adapted to fit the input-structure of GraphSAGE
and language-embeddings are added to each concept which
requires a similar matching method as was used in Experi-
ment I. Heuristics are used to even obtain language represen-
tation for words that do not occur in the vocabulary of the
distributional word-embeddings, resulting in each concept in
ConceptNet having a corresponding DSM word-embedding
representation. Experiment one is then repeated for the lan-
guage embedding obtained using GraphSAGE to compare
the zero-shot performance of these embeddings with others
and later with the results obtained in Experiment III. The
hyper-parameters of Graph-SAGE are fine-tuned on intrinsic
evaluation benchmarks as it is widely accepted that intrinsic
evaluation benchmark performance is a decent indicator of
extrinsic evaluation benchmark performance. The main benefit
of this approach is the significantly faster evaluation time of
intrinsic evaluation benchmarks. The performance on the ac-
tual extrinsic evaluation task, the TALL-task, is calculated in
Experiment III.

The third experiment is used to compare the performance
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of the language representations in the actual downstream per-
formance task using the model architecture and dataset intro-
duced by Gao et al. (2017). Experiment one and three can then
be used to validate our hypothesis that higher zero-shot is ex-
pected to result in better performance in the TALL-task. As the
former model architecture takes in language representations on
the sentence-level rather than the word-level, different methods
are compared to go from word- to sentence-representations.
Lastly, to test the extent the approach of Gao et al. (2017) ac-
tually relies on an accurate representation of language, the
vocabulary of the training set is one-hot encoded after which
a sentence embedding is created out of the average of a sen-
tence’s word-representations. As Gao et al. (2017) introduced
the TALL-task to distance itself from the one-hot encoding
of only a select number of event-classes, this was deemed
necessary to validate whether their used model and evalua-
tion benchmark actually required a richer representation of
language that goes beyond direct vocabulary/class matching.

In the Background Section (2) we have provided an overview
of literature that showed that datasets within the video domain
are still significantly smaller and less diverse than for example
ImageNet. In addition, working within the video domain
increases the computational cost and difficulty of finding an
appropriate visual representation. To partially circumvent
these issues and focus on the main objective here which is
to obtain an improved representation of language for event-
localisation, Experiment I was conducted in the image domain.
This allowed for quicker experimentation while working with
larger and more diverse datasets, which we expected to better
correspond to the general nature of events in the TALL-task.

4.3 I - Zero-shot Cross-Modal Embedding
Space Evaluation

4.3.1 Objective & Relations to Research Questions

In the introduction, we hypothesised (H1, Section 1.5) that
more structured language embeddings were beneficial for bet-
ter performance in the TALL-task due to improved zero-shot
performance in the cross-modal embedding space for unseen
visual-linguistic correspondences. To examine to which extend
the currently popular semantic word embeddings could be
aligned with visual representations for even unseen classes,
this experiment was conducted that focused on the zero-shot
capabilities of the different language embeddings when being
matched with their visual counterpart (e.g. a textual and visual
feature representation of a "dog"). The result of this experiment
is a zero-shot evaluation dataset that allows us to obtain a quan-
titative measure to which extent language embeddings can be
matched with visual features for seen and unseen classes.
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In RQ1 we pose the question whether the combination of
both distributional and relational knowledge is beneficial for
aligning both modalities and therefore results in higher zero-
shot performance. As in Experiment II we obtain our own
language embeddings using both distributional and relational
knowledge similarly to Numberbatch, this allows us to com-
pare whether the addition of relational knowledge is beneficial
for improved zero-shot performance. In RQ3 we compare the
quantitative zero-shot evaluation metric obtained in this ex-
periment, Experiment I, with the actual performance on the
TALL-task obtained in Experiment III. The difference between
Experiment I and Experiment III is that in the former we test
our hypothesis that adding relation knowledge improves zero-
shot performance whereas in the latter we actually test whether
this leads to the hypothesised improvements on the TALL-task.

4.3.2 Methods Overview

To evaluate the zero-shot performance of a variety of language
embeddings when being matched with visual cues, it is bene-
ficiary to create a dataset in which similar classes in the train
and test-set are ruled out to further stress the importance of
broad rather than narrow zero-shot performance. This is in
accordance with the wide variety of events in the down-stream
performance task; TALL. ImageNet, a hierarchical database,
allows for this due to the WordNet structure that expresses
the object-classes in a parent-child hierarchy. Consequently,
this information can be used to ensure that children of parent
classes are excluded in the test-set as they tend to have a high
visual-similarity with the parent class which makes it an easier
challenge. In addition, in comparison to most data sets within
the video domain, ImageNet is considerably more diverse and
contains a general set of objects/entities2. Xian et al. (2017) 2 Abu-El-Haija et al. (2016)

recently released specific zero-shot splits of ImageNet using a
similar approach as proposed here. As the splits were unre-
leased during the creation of our test-set, we have proposed
three test-set splits of our own named; narrow, internal, random.
It should be noted, however, that ImageNet only contains low-
level events such as objects and lack any mid- to high-level
events such as shooting a ball or playing football. Arguably,
mid- and high-level events can be best captured within the
video- rather than image-domain, as they frequently require
complex motion patterns to be captured. This is left for future
work.

For these datasets, visual features were extracted using the
pre-trained Inception-V1 architecture after which a network
was trained that projected these features as close as possible
to the linguistic representation of the synset. Each synset
in ImageNet has a Unique Identifier (UID) which has a cor-
responding textual description that describes the synset in

55



words. These descriptions can be used to match them with
the vocabulary of word-embedding methods in order to obtain
a feature-representation of the synset in language. With the
feature-representations of images extracted from a pre-trained
CNN in a synset and corresponding word-representation in
place, we use this to train a cross-modal embedding space in
which both the visual and textual representations need to be
close. This is used as a simplified version of the cross-modal
embedding space needed to perform the TALL-task in Exper-
iment III (4.5). The benefits of conducting this experiment is
that the zero-shot performance is tested in isolation of the inter-
actions with other components (e.g. temporal localisation) and
faster training and evaluation times are obtained by working
within the domain of images when compared to the TALL-task.

For each word-embedding that was selected, Glove (glove8

40B 300d.txt), Word2Vec (GoogleNews vectors negative300),
LexVec (lexvec commoncrawl 300d W-pos vectors), Number-
batch (numerbatch en 17.06) and in later experiments also the
language embedding obtained by us, a projection-network is
trained separately that projects the visual features into the
domain of the language embeddings. The decision was made
not project both modalities into a new space or project the
language features into the visual domain for model simplicity
and the fact that our visual features are of higher dimension-
ality (1024 compared to 300) respectively. The unseen classes
from the test-set are then projected in a similar fashion. The
word-embeddings were selected by popularity and intrinsic
evaluation scores (see Table 6.2). Within the cross-modal em-
bedding space, the similarity between each visual-synset (all
feature representations of the images in a particular synset)
is calculated to all the language representations of all synsets.
Ordered on their similarity, this results in a ranking score in
which ideally the projected visual representation V′j and corre-
sponding textual representation Tj has the highest similarity
of all word-embeddings T. The mean Average Precision (mAP)
metric is used as an indication of the cross-modal embedding
space to even generalise to unseen classes. To be in line with
the harmonic mean performance metric which is commonly
used in GZSL-tasks, both the performance on seen and unseen
classes are reported.

For zero-shot purposes, having internal nodes in the training-
set of which the children are in the test-set could lead to an
over-estimation of performance as these children tend to be
generally close to the parent node. An example is demon-
strated in Figure 4.3 where one can observe that there is a
significant overlap between visual features between synset
children-classes. The result is that these synsets have similar
feature representations through the considerable overlap in the
model’s input-space, the images, which arguably makes it less
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of a zero-shot performance task. Therefore an extra effort was
made to select synsets for the test-sets specifically with respect
to their relative position to the synsets in the training set using
the ImageNet synset-hierarchy.

mammal placental carnivore canine dog working dog husky

vehicle craft watercraft sailing vessel sailboat trimaran

Figure 1: A snapshot of two root-to-leaf branches of ImageNet: the top row is from the mammal subtree; the bottom row is from the
vehicle subtree. For each synset, 9 randomly sampled images are presented.
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Figure 2: Scale of ImageNet. Red curve: Histogram of number
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images. Over 50% synsets have more than 500 images. Table:
Summary of selected subtrees. For complete and up-to-date statis-
tics visit http://www.image-net.org/about-stats.

images spread over 5247 categories (Fig. 2). On average
over 600 images are collected for each synset. Fig. 2 shows
the distributions of the number of images per synset for the
current ImageNet 1. To our knowledge this is already the
largest clean image dataset available to the vision research
community, in terms of the total number of images, number
of images per category as well as the number of categories 2.

Hierarchy ImageNet organizes the different classes of
images in a densely populated semantic hierarchy. The
main asset of WordNet [9] lies in its semantic structure, i.e.
its ontology of concepts. Similarly to WordNet, synsets of
images in ImageNet are interlinked by several types of re-
lations, the “IS-A” relation being the most comprehensive
and useful. Although one can map any dataset with cate-

1About 20% of the synsets have very few images, because either there
are very few web images available, e.g. “vespertilian bat”, or the synset by
definition is difficult to be illustrated by images, e.g. “two-year-old horse”.

2It is claimed that the ESP game [25] has labeled a very large number
of images, but only a subset of 60K images are publicly available.

ESP Cattle Subtree Imagenet Cattle Subtree
176

Imagenet Cat SubtreeESP Cat Subtree

1377

376

1830

Figure 3: Comparison of the “cat” and “cattle” subtrees between
ESP [25] and ImageNet. Within each tree, the size of a node is
proportional to the number of images it contains. The number of
images for the largest node is shown for each tree. Shared nodes
between an ESP tree and an ImageNet tree are colored in red.

gory labels into a semantic hierarchy by using WordNet, the
density of ImageNet is unmatched by others. For example,
to our knowledge no existing vision dataset offers images of
147 dog categories. Fig. 3 compares the “cat” and “cattle”
subtrees of ImageNet and the ESP dataset [25]. We observe
that ImageNet offers much denser and larger trees.

Accuracy We would like to offer a clean dataset at all
levels of the WordNet hierarchy. Fig. 4 demonstrates the
labeling precision on a total of 80 synsets randomly sam-
pled at different tree depths. An average of 99.7% preci-
sion is achieved on average. Achieving a high precision for
all depths of the ImageNet tree is challenging because the
lower in the hierarchy a synset is, the harder it is to classify,
e.g. Siamese cat versus Burmese cat.

Diversity ImageNet is constructed with the goal that ob-
jects in images should have variable appearances, positions,

Figure 4.3: A visual example of how the synsets
in ImageNet share visual correspondences between
more specific examples in the ImageNet-hierarchy.
The arrows indicate is_a relationships with the more
general parent class being on the left-side. Figure
reproduced from Deng et al. (2009).

4.4 II - GraphSAGE-ConceptNet Embeddings
4.4.1 Objective & Relations to Research Questions

In this experiment, GraphSAGE is applied on ConceptNet
with additional DSM node feature embeddings to obtain word-
embeddings that combine relational knowledge with distribu-
tional word semantics. It was expected that the structure of
ConceptNet could be used to enhance zero-shot performance
by allowing knowledge to be transferred from correspond-
ing vision-language pairs during training to unseen examples.
In addition, the many relationships in ConceptNet centred
around objects, and the role they play in relation to other con-
cepts was expected to result into embeddings that could be
better aligned with visual representations. However, these
assumptions need testing. First, whether our approach indeed
leads to language embeddings that contain these properties.
In Experiment I we test whether our language embeddings in-
deed improve zero-shot performance when matching linguistic
with visual features. Second, testing is required whether these
properties actually lead to the hypothesised improved results
for the TALL-task. As previously mentioned, this is tested in
Experiment III. Therefore Experiment II is used to incorporate
our hypothesis into a potential solution which further tested
in Experiment I and Experiment II to answer RQ1 and RQ2.

4.4.2 Methods Overview

To create our own language embeddings using GraphSAGE
on ConceptNet with node-embeddings features, a couple of
challenges had to be faced.

First, GraphSAGE was successfully applied to datasets in
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a different domain which poses the question of whether this
method can be used on ConceptNet. ConceptNet was found to
be both larger in scale and had significantly lower connectivity.
To ensure that the training of GraphSAGE yielded embeddings
of quality for our task, 17 different intrinsic word-embedding
evaluation benchmarks were run after model-convergence as a
time-efficient alternative to running the TALL-task evaluation
benchmark which requires training the model first. Despite the
recent controversy of using intrinsic evaluation benchmarks as
an indication of extrinsic evaluation benchmark success3,4,5, 3 Chiu et al. (2016)

4 Faruqui et al. (2016)
5 Jastrzebski et al. (2017)

this still remains common practice in literature. To allow Graph-
SAGE to be run on the structure of ConceptNet, first a selection
was made that focused only on the English vocabulary and
removed disconnected sub-graphs that were deemed irrele-
vant for our task to greatly reduce the original data-set size.
Subsequently, the parameters of GraphSAGE were adapted to
our domain including; the amount of sampling and amount
of hops allowed to aggregate the local neighbourhood infor-
mation. For this, both the memory requirements of the model
and the performance on intrinsic evaluation metrics were taken
into account.

The second challenge is to match the ConceptNet nodes,
which are represented by words (e.g. "dog"), with a corre-
sponding language representation. This is not trivial as the
vocabulary of ConceptNet, the concepts, do to a large extent not
overlap with the vocabulary of DSM methods. In our approach,
we solved this mismatch of the ConceptNet concept-vocabulary
and DSM vocabulary by choosing Numberbatch which was
found to have the highest vocabulary-overlap while replac-
ing unknown embeddings with values obtained by heuristics.
Three different replacement techniques were used; taking the
local neighbourhood average, using zero-vectors or an average
of all word-vectors.

Lastly, a significant amount of time was dedicated towards
the hyper-parameter tuning of GraphSAGE to find out how
the different aggregator functions and parameters affected
the obtained node-feature representations (word-embeddings).
Ultimately this resulted in two-aggregator methods being se-
lected which were obtaining similar performance but using
fundamentally different methods. The language embeddings
obtained in this experiment were then compared to selected
popular language embeddings based on their performance on
the TALL-task (in Experiment III) and our obtained zero-shot
dataset (in Experiment I).
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4.5 III - TALL with Sentence Embedding
Replacements

4.5.1 Objective & Relations to Research Questions

In this experiment the objective is to relate the zero-shot eval-
uation scores obtained in Experiment I of popular language-
embeddings and our own (obtained in Experiment II) to the
actual performance of these language embedding in the TALL-
task. As aforementioned, this allows us to give a potential
answer to RQ3. This was assumed to be a reliable method to
test whether more structured language embeddings would be
beneficial for event-localisation given natural language text.

4.5.2 Methods Overview

In order to make a direct comparison between the ability of the
different language embeddings to be aligned with visual fea-
tures in the TALL-task, the model architecture and evaluation
setup of Gao et al. (2017) was used with the representation of
language being substituted by the language embeddings used
in Experiment I and the ones that were obtained in Experiment
II. Gao et al. (2017) use the TACoS and Charades-STA dataset
for evaluating the performance on the TALL-task and provide
access to the pre-processed and sentence annotated TACoS
dataset here. As the Charades-STA dataset is not made publicly
available and the mining of training-examples is not straight-
forward (Section 3.1.2), this dataset was not used. To compare
the performance of the Word2Vec, LexVec, Numberbatch, Glove
and our own language embeddings, we replaced the sentence
annotations in the provided TACoS dataset. Skip-thought6 was 6 Kiros, R., Zhu, Y., Salakhutdinov, R. R., Zemel, R.,

Urtasun, R., Torralba, A., and Fidler, S. (2015). Skip-
thought vectors. In Advances in neural information
processing systems, pages 3294–3302

originally used to represent sentence feature-representations of
textual queries within the TACoS and Charades-STA datasets.
This sentence representation is trained on the sentence- rather
than the word-level. To also obtain sentence embeddings using
our word-level language representation in order to substitute
their Skip-thought language representation, two approaches
were taken.

First, to obtain a sentence representation from the word-
embeddings the average of the individual words in the sentence
were taken to obtain a 300-dimensional sentence representation.
This allowed for direct comparisons between the different word-
embedding methods. Second, InferSent was used as a SOTA
unsupervised technique to obtain 4800-dimensional sentence
embeddings from pre-trained word-embeddings. Thereafter
the TACOS-dataset was updated with these different language
representations and the method of Gao et al. was repeated
under default settings to compare the ability of the model to
localise the sentence representations in their test-set. No stop-
words were removed as there was no mentioning of this in the
original paper.
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Lastly, as the main contribution of the TALL-task is to al-
low the use-age of natural language text instead of a one-hot-
encoding of event-classes, an attempt was made whether their
combination of method and dataset actually requires the need
for such a representation for high performance. For instance,
a completely overlapping and small vocabulary between the
train and test-set would be relatively close to the original task
of event-classification or event-localisation given only a small
list of one-hot-encoded event classes. According to our view,
the task of using natural language text is much more similar
to a GZSL setting, where the objective is to relate the limited
textual-visual correspondences during training-time to unseen
correspondences during test-time. Therefore to validate their
(evaluation-)method, it was deemed necessary to first test to
which extent knowledge transfer between unseen and seen
vocabulary was required to perform well in their designed
evaluation benchmark. To accomplish this, the overlap be-
tween the train and test-set vocabulary in the TACoS dataset
was calculated as well as the vocabulary size. The words were
then one-hot encoded and a sentence embedding was obtained
by averaging the word-vector representations. If with this lan-
guage representation still high performance on the TALL-task
could be obtained this would be a clear indication that this eval-
uation setup does not emphasise the usage of natural language
text.
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5 Experimental Setup
In this section, the practical implementation details of the
methods as discussed in Method Section (4) are discussed. The
experiments and their details are discussed in the same order
with matching section titles.

5.1 I - Zero-Shot Evaluation of Cross-Modal
Embedding Space

5.1.1 Dataset Creation Details

Deng et al. (2010) introduced a subset of ImageNet synsets
consisting of 10184 classes that was used here as a starting point
to create our own zero-shot dataset. The dataset is available on
ImageNet.org and contains 9114552 images with a minimum
of 200 images per class and 800GB in size. To not have a
bias towards classes that contain more images, for each class
only 200 images were sampled resulting in a total of 2036800

images. Thereafter a pre-trained Inception-V1 network trained
on ImageNet1k was used to extract features from to circumvent
the need to train the model ourselves (available at TF-slim). As
this network was pre-trained on 1000 ImageNet classes, these
specific synsets were used as our training-set and acted as a
starting point to obtain our test-sets.

The Inception-V1 model architecture was selected because
Carreira and Zisserman (2017) recently demonstrated that in-
flating the relatively old Inception-V1 (2015) network archi-
tecture to 3D resulted in SOTA visual feature representations
when trained on the Kinetics dataset while being only later
fine-tuned on evaluation benchmark datasets. The main reason
for selecting this older architecture was the computational effi-
ciency obtained by using the Inception-module that efficiently
shares parameters (Table 5.1). As our zero-shot evaluation
benchmark is created within the image rather than the video
domain to allow the usage of ImageNet, the decision was made
to use this model architecture because of the already proven
success of inflating this particular architecture to the video
domain. As argued, the wide variety of subjects that events
can cover arguably demands this large variety of topics which
is not yet achievable within the video domain.

To demonstrate the effect that the selection of synsets has
on the zero-shot performance, three zero-shot test-sets were
introduced that varied in the amount of children synsets of
the training-synsets; random, internal and narrow. Each test-set
initially contained 1137 synsets before certain synsets were
filtered out. For a simplified overview of the differences see
Figure 5.1. In random (R) the only limitation is that the train-
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Network Layers Top-1 error Top-5 error Speed (ms) Citation

AlexNet 8 42.90 19.80 14.56 Krizhevski et al.
Inception-V1 22 30.24 10.07 39.14 Szegedy et al.
VGG-16 16 27.00 8.80 128.62 Simonyan et al.
VGG-19 19 27.30 9.00 147.32 Simonyan et al.
ResNet-18 18 30.43 10.76 31.54 He et al.
ResNet-34 34 26.73 8.74 51.59 He et al.
ResNet-50 34 26.73 8.74 51.59 He et al.
ResNet-101 101 22.44 6.21 156.44 He et al.
ResNet-152 152 22.16 6.16 217.91 He et al.
ResNet-200 200 21.66 5.79 296.51 He et al.

Table 5.1: Accuracy and feed-forward + backward
time for popular modals using the Pascal Titan X
GPU architecture. Benchmarks partially taken from
github.com/jcjohnson/cnn-benchmarks.

and test-classes are non-overlapping. In internal (I) purpose-
fully only children-synsets are used based on the training-set
synsets (X), which are therefore more specific visual examples
of the ones available in the training datasets. This test-set is
called internal as the nodes are within the parent’s sub-tree. The
narrow (N) test-set uses only leaf-nodes that do not exist within
the hyponym sub-tree of any of the synsets in the training-set.
Given that the children classes share more similarity in both
the textual and visual domain, it can be expected that the most
difficult zero-shot evaluation test-sets are therefore from the
hardest to easiest; narrow, random and internal. This is further
discussed in the Result Section (6).

X

RI

N

N R

X

Figure 5.1: An abstract example of how the nodes
were selected from the hierarchy of ImageNet. The
N stands for nodes that could be selected in the nar-
row dataset. The R stands for random nodes, while I
stands for internal nodes, whereas X represent the
nodes in the training-set.

The structure of ImageNet was obtained by parsing the
fall2011 XML version of the ImageNet (structure_released.xml)
dataset available on the official ImageNet website. The result
of this parse was the hierarchy of all the is_a relationships be-
tween all synsets existing in the fall-2011 version of ImageNet.
However, the overlap between the 10184 synsets in the dataset
from Deng et al. (2010) and the ImageNet1k dataset used to
train the Inception-V1 model architecture was not complete
due to the difference in time they were published. In Table 5.2
(a), the overlap between the two is shown. Of the 1000 synsets
in the original ImageNet1k dataset, only 963 existed within the
fall2011 version of ImageNet which were subsequently used as
a starting position for our dataset. In Table 5.2 (b) the final size
of the used versions of ImageNet are shown (further explained
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in Section 5.1.1). Purposefully no synsets are shared between
all three datasets, the ideal size of the random test-set was de-
termined first to still allow the narrow dataset to be of the same
size. The meaning of the after-matching column in Table 5.2 (b)
is explained in the next section.

Originally, an additional experiment was designed to test
the effect a larger training data-set had on the zero-shot perfor-
mance leading to a total of 5579 synsets (693 original training
classes, 2413 test classes (797+802+814) and an additional 2473

training classes). Although this larger training dataset was not
used, the evaluation-benchmark does use all these classes in
order to make the task-evaluation more difficult. See Section
5.1.3 for more details on the task evaluation setup.

(a)

ImageNet1k ImageNet10k Literal ∩ Tree-overlap ∩
#Nodes 1000 10184 963 1817

In XML 1000 10155 — —
Leafnode 650 7385 636 1393

Non-Leafnode 350 2770 327 424

(b)

Original After-matching

ImageNet1k 1000 693

internal 1137 797

random 1137 802

narrow 1137 814

*other 4963 3539

Table 5.2: On the left (a), one can observe the
amount of leaf-nodes and internal nodes for Im-
ageNet1k and ImageNet10k. Literal overlap indi-
cates the amount of overlapping synsets, while the
Tree-overlap also considers a synset overlapping if a
more general synset is available in the ImageNet1k
dataset. On the right (b), the original dataset sizes
are listed before and after all processing steps as
discussed in 5.1.1. The asterisk (*) indicates that this
dataset was not included in the test-set directly but
were included during the evaluation-setup in order
to include random other classes that were not part
of either the training- or test-set.

5.1.2 Cross-modal Embedding Baseline

An overview of how the cross-modal embedding space is cre-
ated is shown in Figure 5.3. The extracted visual Inception-V1

feature representation of images from a particular synset are
attempted to be matched with the language-representation of
that particular synset. In ImageNet a synset contains a bag
of images which represent the visual domain in our model
(V in blue) while each synset also contains one or more short
textual descriptions representing the class/entity name of the
synset (T in yellow). These names are frequently not unique
and therefore a synset-ID is used to disambiguate the classes.
In addition, a more detailed textual description of the class is
given. In XML these are represented by the keywords wnid,
words and gloss respectively, a corresponding example can be
seen in Figure 5.2. How this information is represented in our
model can be observed in Figure 5.3. Here the vision-language
pairs are projected close to each other within the language
domain (yellow) by learning a parameterised function, a Multi-
Layer Perceptron (MLP), to project the visual features close to
their language counter-part.

<synset wnid="n12144987" words="dent corn,

Zea mays indentata" gloss="corn whose

kernels contain both hard and soft

starch and become indented at maturity">

Figure 5.2: Example of an xml-entry of the Ima-
geNet tree structure. By nesting synset definitions,
the hierarchical structure of ImageNet is obtained.

Visual features were specifically extracted from the AvgPool−
0a− 7x7 layer of the Inception-V1 architecture resulting in a
1024-vector image representation. An overview of the Inception-
V1 architecture is shown in Figure 5.4 and the model definition
is available here. For a more detailed description of the model’s
architecture we refer to the work of Szegedy et al. (2015). This
particular layer was selected due to its significant reduction
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synset: n12144987 Inception-V1 

synset name: "dent
corn, Zea mays
indentata" 

lookup & filter 

V

T

MLP

Figure 5.3: Illustration of the zero-shot evaluation
setup. On the left, the images (V) and text (T) come
from the ImageNet dataset where each synset con-
sists of 200 images and the synset name describes
the synset in text in possibly multiple alternative
ways separated by commas. Features are extracted
from the inceptionv1 network and projected down
into the language manifold by a MLP. The language
manifold is obtained by first matching the synset-
name with the word-embedding vocabulary which
requires a look-up and filtering operation. The MLP
tries to minimise the corresponding projected visual
and word-embedding representation of a synset.

in size compared to the previous layer which reduced the
dimensionality from 7x7x1024 to 1024 through pooling and
convolution operators. As a result, spatial information was
traded for the benefit of being computationally more feasible
to train and store. The input of the model are images that
were centre cropped to 224x224x3 after the smallest dimension
of the images were first re-scaled to 256 while keeping the
original aspect ratio intact. This procedure corresponds with
the data-augmentation done by Szegedy et al. (2015) during
the testing phase of their Inception-V1 model. The feature-
representation of an image was represented by the blue dot in
Figure 5.3 whereas the manifold the image got projected into
represents the 1024-dimensional feature space (the manifold in
blue).
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Figure 5.4: Overview of the Inception-v1 architec-
ture with repeating inception modules. An In-
ception module consists of one or multiple pool-
ing operations (red), convolutions (blue) with in
the end a concatenations of the multiple parallel
components (green) before connecting to the next
Inception-module. For a stronger gradient there
are multiple repeated softmax outputs at multiple
levels in the network architecture (yellow).

The matching of the synset wnid or UID with a language-
representation of the synset, is represented by the look-up oper-
ation as is shown in Figure 5.3. In ImageNet each synset UID
has a synset-name that describes the synset in natural language
text. Frequently there are multiple alternative descriptions for
the synset in the synset-name which consist of one or mul-
tiple words, e.g. toilet paper, toilet tissue and bathroom tissue
which are all alternative descriptions of the same synset (for
an example of a XML ImageNet entry, see Figure 5.2). These
descriptions are frequently not unique to the given synset and
therefore can not be used as an UID. However, they are com-
monly used to represent synset-classes in image-classification
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tasks as a human-readable alternative of the synset-wnid. As
the overlap between the vocabulary of semantic embeddings
and these textual-synset descriptions are frequently not an
exact match, a lookup-operation is required that attempts to
match the two. As language embedding methods use different
methods in order to select their training-vocabulary, there is
no one-approach-fits-all solution to match the language vo-
cabulary with the textual synset-descriptions. For example,
within our selection there is a large diversity in how these
language embeddings handle capital letters, representation of
spaces and frequently co-occurring n-grams within the used
textual-datasets.

For the matching of the synset-name with the vocabulary of
word-embeddings, two objectives were taken into considera-
tion. First, as ImageNet is both used for fine-grained and wide-
scale classification the aim was to filter out the fine-grained
classes and only keep one synset representing the whole group.
Arguably this is a subjective step as it is dependent upon
how semantically similar two synsets are perceived. Therefore
this step was carried out manually. For example, when the
synset-description "Chihuahua" was found in the ImageNet10k
dataset as well as the synset-description "dog", only the latter
was kept. ImageNet1k contains many synsets centred around
some specific species in order to carry out fine-grained image
classification. This can be roughly observed by the amount of
non-leafnodes included in the dataset (≈ 350/1000) in Table
5.2(a). For our task, fine-grained classification performance was
not assumed to be important due to (1) the unconstrained na-
ture of language in the TALL-task which stresses general video
understanding. Also, (2) as the TALL-task already focuses on
a single video to search a particular event in, this limits the
probability of a similar event happening in the same video
which would require more fine-grained visual representations.

The second objective was to ensure that the comparison
between the word-embeddings was fair. For this, the same
lookup operation was applied to all language-embeddings in-
dependent of whether the synset-word description could be
directly matched with only some of the vocabulary of the differ-
ent word-embedding methods. This was deemed necessary as
we expected that using different lookup criteria such as the av-
eraging of individual words if not the entire textual description
could be matched directly, would greatly impact the zero-shot
evaluation score of this particular class. This could create an
unfair advantage to the language embeddings that actually
contained the synset-textual description directly compared to
the ones who did not. The precise methodology to process the
words of synsets in Figure 5.2 is explained now.

To go from the words attribute to words that can be matched
in the word-embeddings’ vocabulary a multitude of steps were
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taken. First, the word-embedding vocabulary was all lower-
cased. If duplicates were introduced, only the original word-
vocabulary was kept. The same procedure was adhered to in
all subsequent steps when duplicates were introduced. Spaces
were replaced to underscores and apostrophes were removed.
It was found that the ImageNet synset word-descriptions con-
tained spaces in about 35% of all cases, see Figure 5.5. From
a closer manual inspection, this was found to mostly occur
because animal names generally tend to consist of a com-
pound of multiple words originating from a Latin-origin. The
words-attribute was split on commas to separate the alternative
synset descriptions, after which the same processing criteria
were carried out as for the word-embedding vocabulary. The
multiple word-representations of the synsets were then sorted
on the number of spaces and character length in ascending
order. It was expected that the shortest synset-description was
most frequently used in written-text leading to more accurate
word-embeddings and more frequent appearances in the DSM
vocabulary.
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Figure 5.5: The amount of synsets containing n
number of spaces in the whole ImageNet (32297

classes). Used as illustration for difficulty of match-
ing word-embedding vocabulary with ImageNet
synset class names.

After this step, for all synsets each word description was
looked up in all the different language embeddings methods;
Glove, Word2Vec, Lexvec, Numberbatch and ours of which the
last two are dependent on the node names of ConceptNet (dis-
cussed in Section 5.2). Prior to this step, as aforementioned,
all the synsets that were centred around fine-grained image-
classification were manually mapped to their parent species,
after which duplicates were removed to not unbalance the num-
ber of images (200) per synset. Consequently, the appropriate
word-embedding representation for each synset was attempted
to be found.
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Figure 5.6: Matching operations used to match
the ImageNet synset names and vocabulary
of Word2Vec, LexVec, Numberbatch and Glove.
from_selection : was used if one of the synset-
names was present in all of the word-embedding
vocabularies. multiple : if all the individual words
of one synset-name were present in all language-
embedding vocabularies, the synset representation
was obtained by averaging the individual embed-
dings. redefined : if a 1-word synonym was found
for the synset-descriptions or the class was mapped
to a more general parent class. Statistics based on
all 5579 synsets.

For each synset the processed words were matched with all
word-embeddings at once, if a match with the vocabulary of
all embeddings was available this representation was used. On
average there are 1.85 different words descriptions per synset.
If no direct match was found for all embeddings at once, an ad-
ditional effort was made to redefine the descriptions manually
to a suitable class-name one-word synonym that was available
in all embeddings. As this is a time-intensive task, this was
only done for the examples in the training-set to ensure that
the learned cross-modal embedding space was accurate. If
no such alternative could be found, instead the descriptions
with multiple words were parsed to the word-level after which
the synset-representation was defined as the average of the
individual word-embedding representations. For instance toilet
paper would become 1

2 Emb(toilet) + 1
2 Emb(paper) as a repre-

sentation. In the rare cases that this still lead to words not
present in the vocabulary, the maximum amount of matches
overall word-embedding vocabulary was chosen, and individ-
ual Out of Vocabulary (OOV) words were discarded (e.g. only
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the embedding Emb(toilet) was used if Emb(paper) was not
found in the DSM vocabulary). In Figure 5.6 one can observe
how many times each operation was applied.

5.1.3 Training Objective & Evaluation Benchmark

To evaluate to which extent the parameterised MLP-projection
in Figure 5.3 was able to transfer knowledge from the corre-
sponding visual-language pairs to unseen pairs in a zero-shot
setting, first the cosine-distance between the projected image
and each synset language representation was calculated. There-
after, the cosine-distances were sorted and ranked according
to their similarity in ascending order. The rank at which the
correct image-synset appears was used as a measurement for
success (lower is better) and was captured in terms of mean
Average Rank (mAR), and the mAP@10. For both cases, the
full dataset of 5579 synsets was used that included the training-
synsets, three test-sets and 2413 unrelated other synsets as
discussed in Section 5.1.1.

Now follows a more detailed explanation of how the mean
average precision was calculated. For this we first introduce
the notation as displayed in Figure 5.7. Starting with a par-
ticular image Ii and the function F(I) which represents the
Inception-V1 feature extraction at the AvgPool_0a_7x7 layer,
a 1024 image feature-vector v is obtained. Thereafter the pa-
rameterised function Pθ by θ takes in v and learns to minimize
the distance Pθ(v) and the corresponding word-embedding
feature representation of a synset s. This word-embedding
feature-representation is obtained by the looked operation L(s)
as explained in the previous section. The result of the previous
section is the dataset D that consists of corresponding image
and synset pairs indicated by the same index i:

FIi

ℝ1024

Pθ
ℝ300 

Pθ(v)v

w

Si 
L(si)

ℝ300 

Figure 5.7: Schematic overview of the MLP-
projection network as was first visualised in Figure
5.3. This figure is best understood in conjunction
with the notation introduced in text on the left-hand
side.

D = {Ii, Si} (5.1)

The objective for the MLP network is to minimise the loss-
function L below. Here, either the cosine or contrastive loss-
function was used represented by either γ = 0 or γ > 0
respectively:

L(θ) = − ∑
(i,s)∈D

cos(i, s; θ) + γ E
sneg∼U(S\{s})

[cos(i, sneg; θ)]

(5.2)
The cosine similarity function is defined as:

cos(I, S; θ) =
Pθ(F(I))T · l(S)
||Pθ(F(I))||||l(S)|| (5.3)

Where Pθ is the projection function that projects the image-
feature representation F(Ii) to the image domain and l(Si) is
the lookup function that returns the language-feature repre-
sentation of the synset s. The loss is then minimised by the
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following equation.

θ̂ = arg min
θ

L(θ) (5.4)

With this trained MLP network finally the performance in
terms of zero-shot performance can be calculated. A ranking
function is introduced that takes in images and synsets and
returns the rank at which the corresponding image-synsets are
found on average.

rank : I × S→N (5.5)

The rank is calculated as follows. First the cosine similar-
ity between the projected image Pθ(F(Ii)) and all synset S
word-embedding feature representations is calculated l(S).
Thereafter the rank is assigned to be equal to the amount
of non-corresponding Ii and language synset-representations
l(sj), where j 6= i, ranked higher than the corresponding one
where j = i.

rank(Ii, S) = |s′ ∈ S; cos(Pθ(F(Ij)), l(s′); θ)

< cos(Pθ(F(Ii)), l(si), θ̂)|
(5.6)

However, this only calculates the rank of a single image i. The
total score is calculated by averaging over all images within one
synset, after which these scores are averaged over all synsets
of the particular test-set of interest to obtain the mAP,

mAP =
1
|S| ∑

s∈S

1
|Is| ∑

i∈Is

rank(i, S) (5.7)

Where Is is defined by the following equation.

Is = {i|(i, s) ∈ D} (5.8)

The mAP@10 was reported instead of @5 or @1 as the other
evaluation cut-offs showed significantly higher variance pre-
sumably due to the high amount of training and test-classes
(5579). Random performance would given our evaluation task
only have a mAP@10 of 0.179% (10/5579*100).

5.1.4 Architecture Selection & Training

As the objective of Experiment I is to obtain a zero-shot per-
formance score to compare the ability of different language
embeddings to be paired with their visual correspondences, an
appropriate MLP model architecture should be chosen. First,
different MLP network depths and layer sizes were tested for
improving the zero-shot evaluation scores. A two-layer MLP
of size 300x300 performed best on the evaluation benchmark
suite which was explained in more detail in Section 5.1.3. More
layers improved training performance but decreased the gen-
eralisability to unseen classes indicated by a lower zero-shot
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performance score. This architecture was used as a starting
point to compare the two different loss-functions, the cosine
similarity and contrastive loss-function, under a variety of pa-
rameter settings. These loss-functions are now described in
more detail than was initially shown in Equation 5.2.

Contrastive Loss A contrastive loss-function tries to force
corresponding pairs to be semantically close while artificially
enforcing non-corresponding pairs to be as dissimilar as pos-
sible. Given an input pair Ii, si, the loss-function becomes the
following.

loss(Ii, si) =




(1− cos(Ii, si)) · wp if i = j

max(0, (cos(Ii, si)−m) · wn) if i 6= j
(5.9)

where m is the margin which decides how much error is al-
lowed for positive examples. In literature, this is frequently set
around 0.2. Empirically it was found in our experimentation
that positive examples were found to be significantly more
important for zero-shot evaluation accuracy. As a result, an ex-
tra component was added that weighted positive wp examples
differently from negative ones wn. For our use-case wp was
fixed to 1 and wn was considered a free parameter.

Cosine Distance Loss The cosine distance is a measurement
to calculate the similarity between two vectors in a multi-
dimensional space. It is dependent upon the cosine similarity
which calculates the similarity between two vectors~a and~b as
follows,

similarity(~a,~b) =
~a ·~b
||~a||||~b||

(5.10)

With the cosine distance being defined as:

distance(~a,~b) = 1− similarity(~a,~b) (5.11)

Figure 5.8: Difference between cosine and euclidean
distance.

In Figure 5.8 one can observe the difference between the Eu-
clidean distance and cosine similarity. For the cosine similarity
what matters is the angle between the two vectors, due to the
normalisation factor ||~a||||~b|| the length of the individual vec-
tors does not affect the cosine similarity. The cosine similarity
is defined between -1 and one while the cosine distance is
defined between 0 and 2.

Parameter-selection For all parameter settings 20 epochs
were run, starting with a learning rate of 0.001 with for the
contrastive loss-function w_neg and w_pos set to 1. Each synset
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contained 200 images. For training and testing 180 images per
synset were used, 15 for the final testing and 5 for validating
the model performance during fine-tuning. As testing the zero-
shot performance is a relatively expensive operation as it first
requires training the MLP model after which the evaluation
benchmark has to be run for all language embeddings, the deci-
sion was made to do this on a relatively small dataset while still
ensuring that the results were consistent over multiple runs.
As the zero-shot performance was assumed to be highly de-
pendent upon the selection of synsets, the decision was made
to use the same synsets both for fine-tuning and final testing.
Potential problems of this approach are discussed in Section
7. The order in which parameters were tuned were: activation
and weight initialisation, margin, weight negative and positive
examples, learning rate, dropout rate and batch-normalisation.
Each experiment leads to one parameter being changed. The
parameters were fine-tuned on the Glove embeddings specif-
ically. This could potentially lead to over-fitting towards this
specific language embedding. However, the obtained results
on the validation and test-set showed similar relations which
partially neglected this concern (Results 6).
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(a) cosine: activation-function vs.
weight initialization

val internal narrow random
test-set

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ac
cu

ra
cy

contrastive loss - activation vs weight
non-linearity - initialization

elu - random_normal
elu - xavier
leaky - random_normal
leaky - xavier
relu - random_normal
relu - xavier
selu - random_normal
selu - xavier
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weight initialization

Figure 5.9: Parameter selection: activation vs.
weight initialization method. Results are listed on
the validation-set and the 3 different test-sets.

First the non-linear activation-functions; elu, leaky, relu and
selu were tested under different weight initialization methods;
random normal or xavier. The results are shown in Figure
5.9(a) and (b). Selu with xavier initialization performed best
on the narrow test-set with the cosine loss-function with mini-
mum differences to the contrastive loss-function, therefore this
combination was selected for both. Thereafter, the parameters
m and wn were fine-tuned as displayed in Figure 5.10 and
5.11(b) respectively. Based on these findings, the following
settings were used; m = 0.15 and w_neg = 0.0064.

Thereafter the learning rate was fine-tuned as shown in Fig-
ure 5.11(a) and (b). Batch-normalisation was applied before or
after each layer while temporally disabling dropout. However,
the inclusion of batch normalization greatly reduced the per-
formance on the test-sets (5.11(a)). One possible reason for this
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Figure 5.10: Parameter selection: weight of negative
and positive examples. Results are listed on the
validation-set and the 3 different test-sets.
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Figure 5.11: Parameter selection: batch normal-
ization (left) and margin of the contrastive loss-
function. Results are listed on the validation-set
and the 3 different test-sets.

is that on the test-sets the feature-distribution is significantly
different from the training-set due to the classes being disjoint
with the purpose of zero-shot evaluation. However, this can
not explain why the application of batch-normalisation per-
formed significantly worse on the validation-set. Based on this
finding batch-normalisation was not used in any of the further
experiments. A learning rate of 0.005 was found to work best
for cosine similarity, and 0.001 for the contrastive loss-function.
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Figure 5.12: Parameter selection: learning rate. Re-
sults are listed on the validation-set and 3 different
test-sets.

With all the settings applied, the results for all the word-
embeddings are shown in Figure 5.12 on the validation-set
with five images per synset. In Table 5.15 the final settings are
shown.
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Figure 5.13: Parameter selection: dropout. Results
are listed on the validation-set and 3 different test-
sets.
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Figure 5.14: Final mAP on the validation zero-shot
evaluation dataset for both the cosine and con-
trastive loss-function.

In Figure 5.15 one can observe the effects that the averag-
ing of word-embeddings have on zero-shot and validation-set
performance. It is important to note that all redefined nodes
come from the validation set of the training-set and therefore
perform significantly better. For the zero-shot performance,
one can observe that averaging over multiple words to obtain
a synset word-representation is not recommended with most
of the distribution’s weight centred around the lower end of
the spectrum (in green).

Parameter Setting-cosine Setting-contrastive

epochs 20 20

hidden-layer-1 300 300

hidden-layer-2 300 300

keep-prob 1 1

batch-normalization None None
weight-initialization xavier xavier
learning-rate 0.001 0.005

activation-function selu selu
margin N/A 0.15

weight-negative examples N/A 0.0064

weight-positive examples N/A 1

batch-size 1024 1024

Table 5.3: Final settings of the 2-layer MLP.

72



0 1000 2000 3000 4000 5000
rank

0.0

0.2

0.4

0.6

0.8

1.0

r1
0

from_selection
multiple
redefined

Figure 5.15: The effect of the missing word replace-
ment from Figure 5.6 on rank@10 and average rank.
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5.1.5 Qualitative Analysis using Flickr30k

2 Bryan A. Plummer et al.

A man with pierced ears is wearing glasses and an orange hat.

A man with glasses is wearing a beer can crotched hat.

A man with gauges and glasses is wearing a Blitz hat.

A man in an orange hat starring at something.

A man wears an orange hat and glasses.

During a gay pride parade in an Asian city, some people hold 
up rainbow flags to show their support.

A group of youths march down a street waving flags showing 
a color spectrum.

Oriental people with rainbow flags walking down a city street.
A group of people walk down a street waving rainbow flags.
People are outside waving flags  .

A couple in their wedding attire stand behind a table
with a wedding cake and flowers.

A bride and groom are standing in front of their wedding 
cake at their reception.

A bride and groom smile as they view their wedding 
cake at a reception.

A couple stands behind their wedding cake.
Man and woman cutting wedding cake.

Fig. 1: Example annotations from our dataset. In each group of captions describing the same image, coreferent mentions
(coreference chains) and their corresponding bounding boxes are marked with the same color. On the left, each chain points
to a single entity (bounding box). Scenes and events like “outside” or “parade” have no box. In the middle example, the
people (red) and flags (blue) chains point to multiple boxes each. On the right, blue phrases refer to the bride, and red
phrases refer to the groom. The dark purple phrases (“a couple”) refer to both of these entities, and their corresponding
bounding boxes are identical to the red and blue ones.

dataset (Young et al. 2014), a popular benchmark for cap-
tion generation and retrieval that has been used, among oth-
ers, by Chen and Zitnick (2015); Donahue et al. (2015);
Fang et al. (2015); Gong et al. (2014b); Karpathy et al.
(2014); Karpathy and Fei-Fei (2015); Kiros et al. (2014);
Klein et al. (2014); Lebret et al. (2015); Mao et al. (2015);
Vinyals et al. (2015); Xu et al. (2015). Flickr30k contains
31,783 images focusing mainly on people and animals, and
158,915 English captions (five per image). Our new dataset,
Flickr30k Entities, augments Flickr30k by identifying which
mentions among the captions of the same image refer to the
same set of entities, resulting in 244,035 coreference chains,
and which image regions depict the mentioned entities, re-
sulting in 275,775 bounding boxes. Figure 1 illustrates the
structure of our annotations on three sample images. Sec-
tion 3 describes our crowdsourcing protocol, which consists
of two major stages – coreference resolution and bounding
box drawing – and each stage in turn is split up into smaller
atomic tasks to ensure both efficiency and quality.

Together with our annotations, we propose a new bench-
mark task of phrase localization, which we view as a fun-
damental building block and prerequisite for more advanced
image-language understanding tasks. Given an image and a
caption that accurately describes it, the goal of phrase lo-
calization is to predict a bounding box for a specific entity
mention from that sentence. This task is akin to object de-
tection and can in principle be evaluated in an analogous
way, but it has its own unique challenges. Traditional ob-
ject detection assumes a predefined list of semantically dis-
tinct classes with many training examples for each. By con-

trast, in phrase localization, the number of possible phrases
is very large, and many of them have just a single exam-
ple or are completely unseen at training time. Also, different
phrases may be very semantically similar (e.g., infant and
baby), which makes it difficult to train separate models for
each. And of course, to deal with the full complexity of this
task, we need to take into account the broader context of the
whole image and sentence, for example, when disambiguat-
ing between multiple entities of the same type. In Section 4,
we propose a strong baseline for this task based on a combi-
nation of image-text embeddings, pre-trained detectors, and
size and color cues. While this baseline outperforms more
complex recent methods (e.g., Rohrbach et al. (2016)), it
is not yet strong enough to discriminate between multiple
competing interpretations that roughly fit an image, which
is necessary to achieve improvements over state-of-the-art
global methods for image description.

A preliminary version of this work has appeared
in Plummer et al. (2015). The present journal paper includes
a more detailed description and analysis of our crowdsourc-
ing protocol, as well as brand new, much stronger baseline
results. By using better region features (Fast RCNN (Gir-
shick 2015) instead of ImageNet-trained VGG (Simonyan
and Zisserman 2014)) in combination with size and color
cues, we are able to improve the Recall@1 for phrase local-
ization from approximately 25% to 50% (Section 4.1).

Our dataset is available for download at
http://web.engr.illinois.edu/˜bplumme2/
Flickr30kEntities/

Figure 5.16: Each image in the Flickr30k dataset
is described by 5 different people resulting in a
diverse sentence-annotated dataset.

While the zero-shot performance scores obtained in Experiment
I gives a general sense to the extent the structure of the lan-
guage embeddings can be be matched with visual features, it
provides little insight into which relations are easily accessible.
Therefore an additional experiment was conducted using the
Flickr30k dataset with the objective to gain more quantitative
information of the different relationships that were easily ac-
cessible in the cross-modal embedding space that was obtained
in the Experiment I. For this the sentences were POS-tagged
in order to obtain more insight into which relationships are
accessible in the obtained cross-modal embedding space for the
different language embedding methods. Plummer et al. (2015)
introduce the Flickr30k dataset to provide a benchmark for
sentence-based image descriptions by providing images with
five different sentence descriptions that describe in text what
visually happens within the image (Figure 5.16). An additional
benefit that is obtained when using this particular dataset is
the increased vocabulary size and variety of images. The entire
vocabulary size is 11807 which is roughly a factor 10 higher
than the TACoS and Charades-STA datasets used to evaluate
the TALL-task.
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Figure 5.17: POS-tag frequency in the used
Flickr30k subset.

To calculate the sentence similarity for each image, the pre-
trained cross-modal embedding space that was obtained in
Experiment I was used. The sentences of the Flickr30k dataset
were POS-tagged and parsed to the word-level. Thereafter, for
each word the cosine similarity was calculated with a random
but fixed selection of 1000 images using an average score of the
five image descriptions per image. With the POS-tags more spe-
cific information was expected to be obtained about the ability
of the MLP to extract meaningful relationships between the dif-
ferent word-types and the image. For example it was expected
that nouns-image pairs contained the strongest similarity of
the different POS-tags, while verb-image pairs had stronger
similarity in language embeddings obtained using relational
knowledge due to their central position within ConceptNet.
The frequency of the POS-tags in our dataset-selection can be
seen in Figure 5.17. The sentence similarity was obtained by
taking a word-image cosine similarity average and the image-
sentence similarity scores were ranked for all 1000 images
and sentence combinations. Ideally the highest similarity was
given to the corresponding image-sentence pairs. However,
the model’s ability to rank corresponding sentence-image pairs
higher than non-corresponding pairs was insufficient (Section
6). This indicates that the cross-modal embedding space ob-
tained in Experiment I was not expressive enough to be used
on real-sentences to allow for any further qualitative analysis.
Therefore this experiment was only included to demonstrate
the idea of using the Flickr30k dataset for potential further
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qualitative analysis.

5.2 II - GraphSAGE-Conceptnet Embeddings
In Experiment I a cross-modal embedding space was obtained
to indicate the ability of the language embeddings to be used
in a zero-shot performance task-setting. In this experiment, we
attempt to create our own language embeddings that hypo-
thetically are more structured and visually centred to be better
suited for the TALL-task.

This experiment can be broken up in three distinctive parts.
First, ConceptNet is analysed in Section 5.2.1 and compared
to other datasets that were used by GraphSAGE. Thereafter
in Section 5.2.2 a selection of ConceptNet was made and the
GraphSAGE dataset was created. For this, a similar problem
had to be resolved as in Experiment I in which now the vocab-
ulary of ConceptNet had to be matched with one of the DSM
methods such that node-embedding features could be added.
Lastly, we discuss how we trained the GraphSAGE algorithm
and performed the parameter search in Section 5.2.3.

5.2.1 ConceptNet Analysis & Graph Comparisons

Hamilton et al. (2017) applied their newly introduced Graph-
SAGE algorithm on a variety of different tasks, including ci-
tation and protein-protein interaction predictions. This raises
concerns about whether this approach is also suitable to be
applied to a different domain (ConceptNet) and with a differ-
ent objective (to obtain language embeddings). To address
the former issue, first the conceptnet-assertions-5.6.0.csv ver-
sion of ConceptNet (available here) was analysed in terms
of overall size and available relationship types after which
this was compared to other datasets. The used version of
ConceptNet contains 32755210 rows with concepts in 78 differ-
ent languages with each entry representing a tertiary relation
< subject, relation, object >. Two example rows of the raw
dataset are shown in Figure 5.4.

0 1 2 3 4

/a/[/r/RelatedTo/, /c/fr/rÃl’empaffer-
a/v/, /c/fr/rÃl’empaffer/]

/r/RelatedTo /c/fr/rÃl’empaffera/v /c/fr/rÃl’empaffer {"dataset": "/d/wiktionary/fr",
"license": "cc:by-sa/4.0",
"sources": [{"contributor":
"/s/resource/wiktionary/fr",
"process": "/s/process/wikipar-
sec/1"}], "weight": 1.0}

/a/[/r/EtymologicallyDerivedFrom/,
/c/io/soneto/, /c/es/soneto/]

/r/EtymologicallyDerivedFrom /c/io/soneto /c/es/soneto {"dataset": "/d/wiktionary/en",
"license": "cc:by-sa/4.0",
"sources": [{"contributor":
"/s/resource/wiktionary/en",
"process": "/s/process/wikipar-
sec/1"}], "weight": 1.0}

Table 5.4: Example of two raw dataset-entries of the
conceptnet-assertions-5.6.0.csv version of ConceptNet.

For two reasons the decision was made to focus only on the
English vocabulary. First, this dataset size is orders of magni-
tudes more substantial than the largest dataset GraphSAGE
was applied on which were already considered large, see Table
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5.5. Second, in our approach we add language embeddings to
the nodes in ConceptNet in order to combat the relationship-
sparsity in ConceptNet, which is a common difficulty in KBs.
By focusing only on the English vocabulary, this avoids the dif-
ficulty of finding accurate word-embedding representations for
non-English languages with a subsequent challenge being how
to relate the word-representations of different DSM methods
in one joint representation.

As ConceptNet contains relationships between concepts
from different languages, considering only concepts that go
from and to the same language resulted in only 4209727 rows
and 1856150 unique concepts. This selection was used as a
starting point and was later reduced to 1029619 by additional
filtering steps which will be discussed shortly.

Dataset ↓ Statistic→ Nodes Avg Degree Features Source Dimension

Citation 302424 9.15 word2vec 300

Reddit 232965 492 GloVe CommonCrawl 300

PPI 2373 28.8 variety of molecular info 121

GraphConceptNet (ours) 1029619 5.11 NumberBatch 17.06 300

Table 5.5: Comparison of the datasets used by
Hamilton et al. (2017) with our selection of Con-
ceptNet.

relation start end dataset weight start_word start_pos end_word end_pos

synonym /c/en/nathan/n /c/yi/ŒăŒłŒ§ /d/wiktionary/en 1.0 nathan n ŒăŒłŒ§
is_a /c/en/false_sago/n /c/en/sago_palm/n /d/wordnet/3.1 2.0 false_sago n sago_palm n
related_to /c/en/here /c/en/place /d/verbosity 1.179 here place
related_to /c/en/claudin/n /c/en/protein /d/wiktionary/en 1.0 claudin n protein
synonym /c/en/magnolia/n /c/fi/magnolia /d/wiktionary/en 1.0 magnolia n magnolia

Table 5.6: Example of five cleaned entries of the
conceptnet-assertions-5.6.0.csv version of ConceptNet.

The original csv-file was processed of which a sample is
shown in Table 5.6. The start, end and relation attributes together
represent one tertiary relation < concept_ f orm, relation, concept_to >
in the dataset. The weight variable is unused here (usually
1.0), but reflects a reliability score of the source this row-entry
originated from. The start_word is the actual concept-word
separated from the start attribute which also has the POS-tag if
it was available in start_pos. As current DSM methods do not
disambiguate between different word-usages (homographs), this
attribute was not used. With the python library Networkx intro-
duced by Hagberg et al. (2008) the tertiary relationships were
added back to a graph-structure which significantly increased
the speed in which graph-information could be obtained.
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Figure 5.18: Distribution of neighbours in our se-
lection of ConceptNet compared with that of Num-
berbatch. From Numberbatch only the overlapping
vocabulary is shown.

In Table 5.5 one can observe the difference in size (Nodes)
and connectivity (Avg Degree) together with the node-feature
representation size (Features Source) of the datasets used in
the original paper from Hamilton et al. (2017). Here one can
observe that ConceptNet is considerably larger than the other
datasets with significantly lower connectivity while being on
par with the node feature-dimensionality size. A more in-depth
analysis of the distribution of the average node degree showed
that the distribution is heavily tailored towards nodes having

76



only one neighbour (Figure 5.18). As Numberbatch relies on
the ConceptNet hierarchy and only selects specific concepts
thereof, one question that could be raised was whether the
distribution of neighbouring nodes was the same. In Figure
5.18 one can observe that in Numberbatch a significant portion
of nodes that contained only 1 or 2 neighbours was left out
while containing a similar absolute amount of nodes for all
other neighbours.
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Figure 5.19: The information that is contained in
our selection of ConceptNet as a function of the
nodes that contain at most n neighbours. In orange
one can observe the % of the dataset that is covered
by the nodes.

How dense the information was clustered around only a
select few number of nodes was also deemed important for ob-
taining semantically meaningful relations using our approach.
To visualise how the 4209727 tertiary relations were distributed
around the 1856150 unique nodes, the percentage of relations
covered by nodes that contained up to n-neighbouring nodes
was shown in Figure 5.19. Here, one can observe that the
cumulative sum of nodes with up to 30 neighbours reaches
98.19% of all nodes while the total amount of edges covered
by these nodes is only 59.52% of the total amount of rows.
This means that a significant portion of information is cen-
tred around only very few concepts. As words that are more
frequently used in practice tend to be better represented in
knowledge graphs as well as DSM approaches and intrinsic
evaluation benchmarks, it was expected that this would yield
more qualitative embeddings and higher performance.

5.2.2 OOV Matching & Dataset Creation

For the creation of the GraphSAGE dataset, the aforementioned
English-only selection of ConceptNet was further refined. First,
it was assumed that the 1856150 unique nodes could not all
be reached by traversing through all the edges. To remove
sub-graphs that were potentially irrelevant for our specific
sub-domain of event-localisation, only nodes were included
that were reachable starting from the 5579 synsets within our
ImageNet zero-shot dataset-set. For this, the directionality
of relationships was not taken into account, which is further
discussed in the next paragraph. This selection of synsets
was deemed a decent starting point as ConceptNet contains
99.92% of our selection of synsets which in addition also have a
high 24.78 relationships per node. As these were only centred
around objects, it was expected that these had strong visual
correspondences useful for event-localisation in videos.

Subsequently, as GraphSAGE as presently constructed does
not differentiate between (1) different relationship types or (2)
edge directionality, decisions had to be made about whether
to include non-symmetric relationships and how to handle the
different edge types as observed in Figure 4.2. For example
the tertiary relation <pan, used_for, cooking> is different from
<cooking, used_for, pan> as the relationship is not symmetric. Ag-
gregating node neighbourhood information from asymmetric
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relationships, e.g. is_a, as if they were undirectional could be
problematic. In specific, to not take directionality into account
means that the node dog which is two hops away from a giraffe
is considered equally relevant for the node-embedding feature
representation as a more specific species of dogs that is also
two hops away. Intuitively the former should be taken into
account less than the latter for the feature representation of dog.
Therefore, the decision to which relationships and concepts to
include given these modelling constraints is assumed to have a
significant effect on the obtained language-embeddings.

In Figure 5.20 one can observe how many edge traverses are
required to reach n unique nodes in the case in which edges
are assumed to be directed or undirected starting from the 5579

concepts in our zero-shot dataset. When the edge-direction is
taken into account, a neighbouring node can not be reached if
it is against the direction of the relation. Here one can observe
that the number of unique nodes that are reachable decreases
significantly when edge directionality is taken into account.
The same pattern was observed for the amount of included
edges. In Figure 4.2 one could have observed that a significant
part of the relationships in ConceptNet are asymmetric. Based
on these observations the decision was made to apply no
further filtering step to preserve the vocabulary size and more
importantly the node degree. This resulted in the final selection
of ConceptNet consisting of 1029619 unique nodes and 3098816

rows.
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Figure 5.20: Amount of unique nodes reached start-
ing from with the 5579 synset in our zero-shot
dataset and traversing n-hops through the edges
in ConceptNet. In the undirected case, all edges can
be traversed over whereas in the directed case the
directionality of the edges are taken into account.

Another important question is how this subset of concepts in
ConceptNet can be matched with the language vocabulary of
DSM models to enrich the node representation in GraphSAGE
with word-embeddings. The sparsity of the amount of infor-
mation available for most concepts as was revealed in Figures
5.18 and 5.19, arguably requires the significantly more dense
feature representation created using distributional approaches.
One reason for the large concept- and word-embedding vocab-
ulary mismatch is that ConceptNet allows concepts to consist
of multiple words separated by underscores, whereas in the
word-embeddings we used this was not the case for all except
Word2Vec and Numberbatch.

In Figure 5.21 an overview is provided of the overlap of
our ConceptNet vocabulary and the vocabulary of the differ-
ent word-embedding methods either with undirected edges
or directed edges. Here one can observe that Numberbatch
has a significantly larger vocabulary overlap than any of the
others language embedding vocabulary with our subset of con-
cepts in ConceptNet. Therefore the language embeddings from
Numberbatch were selected to be used as the node-feature
representations of ConceptNet. In addition, Numberbatch out-
performed many of the DSM in the intrinsic word-evaluation
methods (Table 6.2), indicating that the embeddings are more
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in line with how humans judge similarities between words.
The structure of ConceptNet was already used in the process
of creating the Numberbatch word-embeddings, therefore our
approach uses ConceptNet twice. First indirectly with the use-
age of Numberbatch which used already used the structure of
ConceptNet in its creation. Secondly, in our approach where
we use the structure of ConceptNet in GraphSAGE to aggre-
gate local-neighbourhood node information. To guarantee that
our obtained embeddings do not blatantly copy the Number-
batch representations to obtain the observed results (6), this is
further analysed and discussed in the Discussion Section (7).
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Figure 5.21: Overlap of the vocabulary for our Con-
ceptNet selection using the undirected and directed
dataset as shown in Figure 5.20. Significant vo-
cabulary overlap occurs between the Numberbatch
vocabulary and our ConceptNet concept selection.
In the end the undir ConceptNet concept selection
is used.

As seen in Figure 5.21 still a significant part of the vocab-
ulary of ConceptNet that was used here (undir) could not be
matched with the semantic word-embedding vocabulary. De-
spite 91.66% of the Numberbatch vocabulary being available
in our ConceptNet selection, this overlap was only 37.14% of
the total vocabulary size of our significantly larger Concept-
Net concept selection. Therefore, three alternative methods
were used to replace the 63.86% missing Concept node feature-
representations; zero vectors, node-embedding averages or
local neighbourhood averages. The algorithm for the latter
can be found in Algorithm 2. Speer and Lowry-Duda (2017)
faced a similar problem of matching the vocabularies from
different DSM approaches and used a more intelligent method
to achieve this. Due to time-constraints this was left for future
work.

Algorithm 2 Missing word-embeddings by neighbourhood
average algorithm, called: neighbourhood_average)

Input : A, adjacency matrix of neighbouring nodes;
s, binary vector indicating whether word in A is
in Numberbatch or has obtained a representation
by neighbours.
word_vecs, all ConceptNet word-embeddings with
zero vectors for unknown embeddings in
Numberbatch

Output : Word-embedding for each word in ConceptNet

1: for i . . . Iterations do
2: s = A.dot(s)
3: word_vecs = A.dot(word_vecs)
4: word_vecs = divide(word_vecs.T, s, where(s! = 0)).T
5: s = clip(s, max = 1)
6: word_vecs[ids_in_numberbatch] = numberbatch_vecs

The aforementioned ConceptNet node selection and node-
feature representations lead to the dataset required for the
GraphSAGE model input. The required files are shown in
Table 5.7. The ConceptNet sub-graph with 1029619 nodes and
3098816 rows was represented in the G.json file. As for our

79



purpose a closed world assumption can be made, where the
generalisation to unseen nodes is not required, the decision
was made to not use the val or test attribute as this leads to opti-
mal performance1. Instead, the objective here was to maximise 1 Hamilton et al. (2017)

the word-embedding quality concerning intrinsic evaluation
benchmark scores. The id_map.json specifies how the node-
ids in the G.json are mapped to consecutive numbers. This is
important as the feats.npy uses this id_map to find the index
of the corresponding distributional semantics word represen-
tation. The class_map can be used to map back these ids to
corresponding classes. For our case the id_map and class_map
are an identity map as the G.json was used to reconstruct the
node-id to the corresponding concept-name.

Lastly, the walks.txt is a file that contains random walks for
each node that is consequently used to sample neighbouring
nodes from for the particular node of interest. This is used as
a sampling technique of a node’s local neighbourhood, with
negative samples being represented by nodes not in the local
neighbourhood. Hamilton et al. (2017) provide a script for
obtaining these random-walks and negative examples after
which these are fixed for training. Acquiring positive and
negative samples before training time lets the algorithm run
about 100− 500x faster in practice2. 2 Hamilton et al. (2017)

file purpose

G.json networkx-specified json file describing the input graph, each node has a ’val’ or ’test’ attribute.
id_map.json dictionary mapping the graph node ids to consecutive integers
class_map dictionary mapping the graph node ids to classes
feats.npy node features with indices corresponding with range the id_map maps to
walks.txt a text file specifying random walk co-occurrences

Table 5.7: GraphSAGE model input specifications.5.2.3 GraphSAGE Training & Parameter Selection

Hamilton et al. (2017) provided an unsupervised and super-
vised version of their algorithm. Here, the unsupervised
version of GraphSAGE was used that uses an unsupervised
loss-function that specifies that the local neighbourhood of a
particular node should have feature-representations that are
more alike than distance regions. To obtain the best possible
representation of nodes for TALL-task, first the parameters
were tuned on the 17 different intrinsic evaluation metrics.
The benchmark test is available here. It was assumed that
embeddings that performed better on these intrinsic evalu-
ation benchmarks would perform better to the downstream
performance task. The main benefit of this approach is that
testing on intrinsic evaluation metrics is faster as they do not
require training a cross-modal embedding space first. Intrinsic
evaluation metrics instead are computationally inexpensive to
compute, taking only about 45 minutes for the 17 different
tasks. The numbers reported in the upcoming figures indicate
the average score for all these tasks, for which the scores on

80

https://github.com/kudkudak/word-embeddings-benchmarks


the individual benchmarks are moved to the Appendix Section
A.

For all but the final experiments the GraphSAGE algorithm
was run on the thin nodes in the Cartesius cluster which has
a CPU with 64GB of RAM as seen in Table 5.8. The GPU
speed-up was considered marginal, while the initial peak mem-
ory requirements of the network was around 68GB under the
default settings. Most of the memory requirements were ac-
credited to the walks.txt file being loaded which happened
pre-training. An effort was made to allow the model to be
run on the thin node of which significantly more nodes were
available than the fat node that contained 256GB of RAM. The
number of random-walks was decreased slightly such that the
peak memory requirements came at 63 GB.

Node Type Number Cores CPU CLOCK Memory

broadwell 177 32 E5-2697A v4 2.6 GHz 64 GB
thin 1080 24 E5-2690 v3 2.6 GHz 64 GB
thin 540 24 E5-2695 v2 2.4 GHz 64 GB
fat 32 32 E5-4650 2.7 GHz 256 GB
gpu 64 16 E5-2450 v2 2.5 GHz 96 GB
knl 18 64 7230 1.3 GHz 96 GB

Table 5.8: Cartesius computational cluster CPU-
node specifications.

During the parameter-tuning phase for each parameter set-
ting the training was being stopped after 12 hours with the in-
trinsic evaluation benchmarks being run at every epoch. Train-
ing a larger amount of epochs was found to consistently lead to
increased performance on our evaluation-benchmark, although
slightly, a result that is in line with the findings of Hamilton
et al. (2017). Therefore always the result of the last epoch
is shown here. As the aggregator function greatly affected
training-speed, this resulted in a different amount of epochs
for each of the aggregator functions. The variability of the
training-speed can be seen in Figure 5.24(b). For the final run
with the best parameter settings, the algorithm was run for
three consecutive days (72 hours) for improved results. As the
evaluation of the model took a significant time off the avail-
able training-time, the evaluation frequency was decreased to
multiple epochs.

The following parameters were fine-tuned; max_degree, sam-
ples_1, samples_2, neg_sample_size and random_context. A de-
scription of these parameters are provided in Table 5.9. See
Section 3.3 for a more general explanation of the GraphSAGE
algorithm and the work of Hamilton et al. (2017) for more
implementation details. Now follows a description of how
these parameters were selected.

First, the effect the different aggregator functions had on the
intrinsic evaluating benchmarks were calculated in combina-
tion with whether they were using random context or not, see
Figure 5.22(a). The remainder of the settings were initially left
under the default settings. The best settings are used for each
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parameter description

max_degree For computational efficiency, the maximum node degree was capped at this number of nodes
samples_1 Number of positive examples to consider with 1 hop distance from the node of interest
samples_2 Number of positive examples to consider with 2 hop distance from the node of interest
neg_sample_size Number of
random_context Boolean indicating whether for the random walk, random context was used or only direct neighbouring edges
dropout Dropout rate
model_size Size of the hidden layer’s aggregator function, can be either "large" (1024) or "small" (512)

Table 5.9: GraphSAGE fine-tuned parameters and
description.aggregator function separately. Consequently, the different

methods to replace the OOV node-feature embeddings were
tested, see Figure 5.22(b). Based on these findings the decision
was made to focus most of the remaining efforts towards fur-
ther tuning the gcn and meanpooling aggregator functions, with
hops OOV replacement for gcn and zeros for meanpool. Due to
the minimal differences between these initialisation methods,
the decision was made to choose for a diversification strategy
in which a few different aggregator functions and OOV replace-
ment methods were chosen rather than strictly selecting the
best performing models. It was still considered probable that
the performance on the intrinsic evaluation benchmarks were
not an optimal indicator for the performance on the TALL-task.
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Figure 5.22: Comparisons of the mean of the 17 in-
trinsic evaluation benchmark scores for the different
sampling and OOV-replacement methods used to
train GraphSAGE with, part 1.

Due to the edge-sparsity of the ConceptNet graph with most
nodes having only one neighbour (Figure 5.18), the decision
was made to test only a lower number of walks of 10 or 20,
see Figure 5.23(a) as selecting a higher amount of walks would
only benefit nodes with significantly more neighbours. In
parallel the number of hops for which the amount of infor-
mation was aggregated was fine-tuned, of which the result is
displayed in Figure 5.23(b). Minimal differences between 1 or 2

hops neighbourhood-information aggregation were observed,
with more hops slightly lowering the performance. Two hops
node-information aggregation was taken. It is important to
note that these observations are expected to be significantly
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different when the directionality of the edges would be taken
into account. As previously discussed, GraphSAGE does not
allow for this and therefore it can be expected that a lower
number of hops is preferred in order to not include relatively
unrelated nodes in a node’s local neighbourhood. A more
detailed analysis of the differences in performance between
these methods is given in the Results Section (6).
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Figure 5.23: Comparisons of the mean of the 17

intrinsic evaluation benchmark scores for a different
number of walks and walk lengths used to train
GraphSAGE with, part 2.

Lastly, the effect of a larger hidden state size for the se-
lected aggregator functions were tested in combination with
dropout, see Figure 5.24(a). No dropout performed best while
the difference in performance between a 512 (small) or large
(1024) hidden state size made almost no difference. For the
final run a walk-length of 2_20 was chosen with hops OOV
replacements for gcn and zeros for meanpool. Random context
was set to False, while the hidden state size of 512 was used.
Figure 5.24(b) shows the amount of iterations each aggregator
function was able to finish within 12 hours of training with gcn
and gcn_meanpool being the fastest. Despite these differences
in performance, it was not found that increased training times
of slower aggregator functions resulted in a difference in the
ranking of aggregators concerning their performance.

The final run that was trained for 72 hours is reported in
the Results Section (6).

5.3 III - TALL with Embedding Sentence
Replacements

In this experiment the language embeddings obtained in Exper-
iment II were compared to the language embeddings obtained
using popular DSM methods in literature. For this, different
methods were used to combine the word-level language repre-
sentation to the sentence level as this is the input of the Gao
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Figure 5.24: Comparisons of the mean of the 17

intrinsic evaluation benchmark scores for large hid-
den state and training-speed aggregator function
comparison for GraphSAGE, part 3.

et al. (2017) model architecture for the textual domain. This
is discussed in Section 5.3.1 and 5.3.2. Thereafter the work of
Gao et al. (2017) is reproduced in Section 5.3.3.

Due to the absence of the original work of Gao et al. to
include an analysis of the TACoS and Charades-STA dataset,
an analysis was included on the vocabulary diversity in Section
5.3.4 and 5.3.5. This was considered especially important as
our approach towards obtaining more structured language em-
beddings assumed that knowledge transfer from the training
to test-set domain was of vital importance. As the original
intent of Gao et al. was to go from a pre-defined list of classes
towards the usage of natural language text, we argue that an
appropriate evaluation setup would also require an improved
representation of language beyond a simple 1-hot encoding of
event-classes for high performance. Therefore in Section 5.3.6
we test whether representing a sentence as a 1-hot encoding of
words still gives high performance, as this severely limited the
transfer of knowledge from the train- to test-set vocabulary.

As Gao et al. made the manipulated TACoS dataset available
but did not provide access to their Charades-STA dataset, the
decision was made to only focus on the TACoS dataset for
the reproduction of their work and comparison with our own
language embeddings. However, the textual dataset analysis
was still carried out for both datasets.

5.3.1 Averaging: from Word to Sentence Embeddings

In Figure 5.26 one can observe an example of the sentence an-
notations in the TACoS-dataset. As these sentences contained
a significant amount of spelling mistakes, the python library
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difflib and the function get_close_matches was used to find the
closest match in the vocabulary of missing words in the vocab-
ulary of the word-embeddings. For this, the sentences were
first tokenised with the nltk package and each word was lower-
cased. If no match was found with high confidence, the word
was left out. A random sample of the correction proposals
with our own vocabulary is shown in Figure 5.25, which was
deemed sufficient. Ideally, with perfect overlap between the
TACoS language vocabulary and the word-embedding vocab-
ulary, only the ability of the model to align vision and text
in the downstream performance TALL-task was tested. Af-
ter this step, the sentence feature representation was created
by averaging the individual word-vector representations. As
no significant difference was found between OOV matching
or OOV removal, the decision was made to remove the miss-
ing words in the vocabulary (Table 6.3). In Table 5.10 one
can observe some general statistics of the train and test-set
splits as proposed by Gao et al. (2017). One notable detail is
that the average sentence length in the validation- and test-
set is significantly shorter than in the training-set. As Gao
et al. (2017) mention that for longer sentences the performance
on the TALL-task is lower, the actual performance on these
datasets can be expected to be lower.

Figure 5.25: Random examples of the di f f lib library
and the get_close_matches function used for correct-
ing OOV spelling mistakes.

s13-d21.avi_627_686 The person gets out a knife .

s13-d21.avi_627_686 The person takes out a knife from the drawer .

s13-d21.avi_627_686 He placed the knife on the cutting board .

s13-d21.avi_627_686 The person selects a knife .

Figure 5.26: Example of temporal sentence-
annotation in the TACoS dataset with multiple alter-
native sentences per video-segment. The first word
consists of the video-name (s13-d21.avi) and tem-
poral window (627_686) in which the event occurs
described in text.

train test validation

# videos 75 25 27

# clips 1604 722 964

# sentences / clip 9.86 10.19 10.32

# words / sentence 6.33 5.65 4.76

Table 5.10: Statistics of the different train- and test-
set splits created by Gao et al. (2017).

5.3.2 Infersent: from Word to Sentence Embeddings

The Infersent algorithm (available on GitHub here) was applied
on our word-embeddings to obtain sentence-level language
representations. The Infersent algorithm learns the relative
importance of the word-embeddings in a supervised matter
which results in better sentence representation than a simple
word averaging or even SkipThought3. The main benefit of 3 Conneau, A., Kiela, D., Schwenk, H., Barrault,

L., and Bordes, A. (2017). Supervised learn-
ing of universal sentence representations from
natural language inference data. arXiv preprint
arXiv:1705.02364

InferSent over SkiptThought for our approach is that it (1)
uses pre-trained word-embeddings as a starting point which
therefore allows the usage of our own language embeddings
and (2) has a smaller training-corpus which allows for faster
training. SkipThought is trained in an unsupervised matter on
74M sentences from a collection of books whereas InferSent
is trained on only 570k sentences from the SNLI corpus that
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contains human-generated English sentence-pairs. In addition,
Infersent has shown the capabilities of consistently outperform-
ing SkipThought on a variety of tasks4. 4 Conneau et al. (2017)

Training The default settings were used for training Infersent
with only changes being made to the hidden state size. The
hidden state representation size was changed from 2048 to
2400 in order to obtain the final sentence embedding size of
twice this amount of 4800. As our embeddings were obtained
using GC on ConceptNet rather than DSM methods, there were
no tokens for the start < s > and stop < /s > of sentences.
Two attempts were made to add these tokens artificially as
they were required for the Infersent algorithm; using word-
embedding averages or zero vectors. In Figure 5.27(a) and
(b) the importance of the word-embeddings according to the
Infersent-model was using the same methodology as used by
Conneau et al. (2017). As a lesser importance was preferred
for the stop and start tokens, zero vectors (b) were used. The
feature average (a) was expected to give higher levels of im-
portance as all dimensions had a relatively high activation,
resulting in slightly higher importance levels according to the
model.
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(a) Word embedding-mean for beginning and end
of sentence token
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Figure 5.27: Comparison of the relative importance
of the beginning and sentence tokens using different
initialization methods. (a) word-embedding mean,
(b) zero vectors. Notice the different y-scale of both
sub-figures.

5.3.3 TALL Training & Reproduction

For the TALL training, the default settings were used as it
was not expected that different language embeddings would
require adjustments in hyper-parameters. The results of Gao
et al. (2017) were reproduced and the training behaviour at
different IoU, R@n and iterations were analysed (Figure 5.28).
From these observations, it was concluded that training con-
verged quickly and was stable with limited risk of over-fitting.
Similar but slightly lower performance was obtained as was
reported in their paper (Results, 6.
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Figure 5.28: Replicating the results of Gao et al.
(2017). Training performance is relatively stable af-
ter the first 2000 iterations. The default parameters
of Gao et al. were used including 20k iterations.

5.3.4 TACoS Analysis for Zero-Shot Test-Set

The TACoS train-, validation- and test-set consisted of 100071,
47361, 41628 words respectively. The overlap in vocabulary can
be seen in Table 5.11(a). The vocabulary overlap between the
train and validation/test dataset is 57.34 and 55.91% respec-
tively. However, this was presumably due to spelling mistakes,
when this was compensated for the frequency in which the
words were used this resulted in 98.72% and 98.89% overlap
for the validation and test-set respectively. With stop-words
removed this lead to 97.80% and 98.11% overlap respectively.

5.3.5 Charades-STA Analysis for Zero-Shot Test-Set

The TACoS train- and test-set consisted of 89502 and 26922

words respectively. The overlap in vocabulary can be seen
in Table 5.11(b). The vocabulary overlap between the train
and validation/test dataset is 50.43%. Compensated for the
frequency these words were used, this resulted in 99.25% over-
lap and 98.87% without stop-words. The final results of this
experiment are shown in Section 8.

(a)

train val test

train 1556 892 870

val 1199 785

test 1123

(b)

sentences videos

train 10146 75

val 4589 27

test 4083 25

Table 5.11: TACoS dataset statistics

(a)

train test

train 1150 580

test 870

(b)

sentences videos

train 12408 5338

test 3720 1334

Table 5.12: Charades-STA dataset statistics

5.3.6 One-hot Encoding of Words Alternative

The use of word embeddings as language representation can be
seen as a method to transfer knowledge from the training-set
vocabulary to the test-set vocabulary. Given the relatively small
datasets in Charades and TACoS and high overlap in vocabu-
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lary between the test- and training-set, one question became to
which extend this property of the language embeddings was
still relevant. Therefore, in this experiment the 1556 unique
words in the TACoS training-set were represented as a one-hot
encoding of words instead. A sentence was represented as
the sum or average of words, with the OOV words still being
discarded as was already performed in Section 5.3.1 for a fair
comparison. Four different configurations were tested. With
or without stop-words and with or without normalisation to
unit-length. The results can be observed in Section 6.3.
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6 Results & Analysis
The results of Experiment I, II and III are shown below. An
interpretation of the results is given in the Discussion Section
(7).

6.1 I - Zero-shot Results of Cross-Modal Em-
bedding Space

In Figure 6.1 and 6.2 the mAR is shown as was described in
Section 5.1.1 for the cosine and contrastive loss-function. Lower
is better. Both figures show the same relationships between the
language embedding methods, where Numberbatch > Glove
> Lexvec > Word2Vec. The gcn_∗ variant of our embeddings
were close to Numberbatch.
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Figure 6.1: Cosine: mAR word-embedding eval-
uation comparison. Comparison of the zero-shot
performance of a variety of word-embedding meth-
ods in the task-setting as discussed in Experiment I
(4.3). Displaying mAR out of 5579 synsets.
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Figure 6.2: Contrastive: mAR word-embedding
evaluation comparison. Comparison of the zero-
shot performance of a variety of word-embedding
methods in the task-setting as discussed in Experi-
ment I (4.3). Displaying mAR out of 5579 synsets.

The zero-shot MAP@10 on the internal, narrow and random is
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shown for the cosine and contrastive loss-function in Figure 6.3
and 6.4 respectively. Higher is better. Here one can observe that
Numberbatch outperforms DSM language embeddings with a
considerably margin except for Glove which is relatively close.
Our gcn_∗ language embeddings outperforms Numberbatch
on all the zero-shot test-sets.
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Figure 6.3: Cosine: mAP@10 word-embedding eval-
uation comparison. Comparison of the zero-shot
performance of a variety of word-embedding meth-
ods in the task-setting as discussed in Experiment I
(4.3). Displaying mAP@10 out of 5579 synsets.
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Figure 6.4: Contrastive: mAP@10 word-embedding
evaluation comparison. Comparison of the zero-
shot performance of a variety of word-embedding
methods in the task-setting as discussed in Exper-
iment I (4.3). Displaying mAP@10 out of 5579

synsets.

In order to test whether the results obtained in Fig 1.2 were
significant, significant tests were performed. For this, the zero-
shot test-classes scores (3183) were aligned for all language
embeddings after which the Shapiro test was performed to test
if the scores were normally distributed. This was not found to
correct for any language embedding pairs for either the con-
trastive or cosine similarity loss. Therefore, the Wilcoxon test
was used to compare whether the two related paired samples
came from the same distribution. For all of the embedding
pairs, this was not the case see Figure 6.1.
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Cosine Loss (symmetric) Contrastive Loss (symmetric)

a ↓, b→ glove lexvec numberbatch word2vec glove lexvec numberbatch word2vec
glove — 2.2420e-155 1.6534e-07 6.4403e-159 — 8.9286e-24 4.0647e-82 1.7143e-53

lexvec —- — 7.130e-163 0.001470 — — 1.8622e-174 7.6570e-27

numberbatch — — — 2.8535e-163 — — — 1.5337e-219

word2vec — — — — — — — —

Table 6.1: Statistical significance between the ob-
tained difference in rankings of the popular word-
embedding methods as result of Experiment I (4.3).

6.2 II - GraphSAGE-ConceptNet Embeddings
Results

6.2.1 Quantitative - Intrinsic Evaluation

An overview of the 17 intrinsic evaluation scores are shown in
Table 6.2. The tasks are divided into the categories; categoriza-
tion, similarity and analogy. An explanation of the differences
can be found in Section 3.2.2. Out of the 17 scores, 5 are the cur-
rent SOTA including one tie; AP, BLESS, ESSLI_1a, ESSLI_2c
(tie), RW. The mean of all scores is given on the right. Here one
can observe that despite being first (5) or second (7) highest
for most of the tested word-embeddings, on average our score
is still significantly lower than most (6 out of 10). This can
be solely accredited to the low performance found in analogy-
based tasks, which is further discussed in the Discussion 7.
The aggregator function applied to combine the local neigh-
bourhood information was found to have a significant impact
on the performance of certain intrinsic evaluation tasks. In
specific the mean-pooling operation keeps certain relationships
intact for analogy reasoning while the gcn aggregator function
greatly degrades the performance on the Google and MSR per-
formance analogy-tasks. An explanation for these differences
is given in the Discussion Section (7).

Categorization→ Categorization Tasks Similarity Tasks Anology Tasks

Evaluation → AP BLESS Battig ESSLI_1a ESSLI_2b ESSLI_2c MEN MTurk RG65 RW SimLex WS353 WS353R WS353S Google MSR SemEval mean ↓
Ev. citation →
Embedding ↓

Abdulrahman
et al.

Baroni
et al.

Baroni
et al.

Baroni et al. Bruni
et al.

Halawi
et al.

Rubenstein

et al.

Luong
et al.

Hill et
al.

Finkelstein et al. Mikolov
et al.

Mikolov
et al.

Jurgens
et al.

HPCA 0.592 0.680 0.431 0.705 0.750 0.578 0.659 0.606 0.689 0.257 0.275 0.610 0.526 0.708 0.393 0.291 0.152 0.524

NMT 0.415 0.445 0.165 0.568 0.700 0.622 0.492 0.457 0.590 0.306 0.460 0.488 0.444 0.572 0.212 0.434 0.166 0.443

LexVec 0.657 0.845 0.438 0.818 0.750 0.667 0.809 0.712 0.765 0.489 0.419 0.693 0.648 0.754 0.710 0.601 0.187 0.645

Glove 0.637 0.820 0.423 0.750 0.825 0.644 0.737 0.633 0.770 0.367 0.371 0.543 0.477 0.662 0.717 0.614 0.170 0.598

morphoRNNLM 0.572 0.605 0.386 0.614 0.775 0.578 0.581 0.620 0.602 0.318 0.242 0.543 0.445 0.645 0.107 0.093 0.175 0.465

PDC 0.639 0.805 0.431 0.818 0.725 0.644 0.773 0.672 0.790 0.472 0.427 0.733 0.673 0.762 0.748 0.596 0.190 0.641

Numberbatch 0.724 0.830 0.472 0.864 0.750 0.756 0.860 0.720 0.910 0.545 0.651 0.755 0.687 0.824 0.381 0.539 0.247 0.677
Word2Vec 0.649 0.805 0.419 0.750 0.800 0.644 0.759 0.682 0.761 0.497 0.442 0.700 0.635 0.772 0.402 0.712 0.222 0.627

HDC 0.622 0.815 0.432 0.773 0.750 0.600 0.760 0.658 0.806 0.463 0.407 0.717 0.654 0.768 0.731 0.564 0.199 0.631

FastText 0.632 0.845 0.439 0.773 0.750 0.667 0.764 0.679 0.800 0.479 0.380 0.706 0.655 0.754 0.656 0.521 0.196 0.629

mean → 0.614 0.750 0.404 0.743 0.758 0.640 0.719 0.644 0.748 0.419 0.407 0.649 0.584 0.722 0.506 0.497 0.190

gcn-hops-2_20-big 0.749 0.850 0.441 0.886 0.750 0.689 0.820 0.699 0.862 0.546 0.507 0.695 0.617 0.808 0.042 0.054 0.164 0.599

gcn-hops-3_20-big 0.766 0.870 0.448 0.886 0.725 0.689 0.819 0.699 0.842 0.553 0.528 0.719 0.634 0.818 0.041 0.053 0.170 0.604

gcn-hops-3_30-big 0.731 0.885 0.440 0.909 0.725 0.756 0.824 0.694 0.856 0.546 0.508 0.715 0.639 0.796 0.038 0.053 0.170 0.605

gs_mp-zeros-3_20-small 0.649 0.825 0.425 0.773 0.675 0.578 0.728 0.495 0.728 0.363 0.528 0.585 0.444 0.721 0.274 0.276 0.152 0.542

gs_mp-zeros-3_30-small 0.647 0.830 0.430 0.818 0.800 0.600 0.736 0.518 0.758 0.376 0.524 0.578 0.439 0.707 0.260 0.267 0.168 0.556

mean → 0.708 0.852 0.437 0.855 0.735 0.662 0.786 0.621 0.809 0.477 0.519 0.658 0.554 0.770 0.131 0.141 0.165

Table 6.2: The 17 intrinsic evaluation benchmark
scores for all tested word-embedding methods. The
tasks can be categorized into categorization, simi-
larity and analogy based tasks.

The intermediate results obtained during parameter-tuning
can be found in the appendix; aggregator-OOV-replacement
A1, random vs non-random path A2, hops-length vs aggregate
function A3, random-walks vs aggregator function A4 and
dropout vs aggregate function A5.
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6.2.2 Qualitative Results - TSNe

The TSNe algorithm was trained on a sample of 20k examples
while the vocabulary that was plotted consisted of the set of the
first eight sentences parsed to the word-level of the Flickr30k
dataset in order to select a diverse set of sentences. First, the
dimensionality was reduced from 300 to 10 using PCA, with
the sole purpose of improving the computational efficiency of
the TSNe algorithm. Ideally, the TSNe plots would have been
obtained by using all data-points for the most legitimate com-
parison, but increasing the number of points above the used
20k sample lead to no progress in the sklearn TSNe plotting
function. The differences can be observed in Figure 6.5, 6.6
and 6.7 for Glove, Numberbatch and our own embeddings re-
spectively. The colours were only used to indicate the different
data-points and have no other meaning.

One can observe that Glove has many concepts clustered
around each other, whereas in Numberbatch the concepts are
slightly more spread. Our embeddings are spread the most
with function words, e.g. e.g. for, of, out, with, an being clearly
separated from the rest of the vocabulary. In the Numberbatch
embeddings, these are all tightly clustered together. Clusters in
Numberbatch are mostly related to synonyms or words used
in similar contexts; our embeddings seem to be less systematic
in the projection of these relationships. For example, shirt↔
jeans is closely together but distant from shorts ↔ bikers, in
Numberbatch biker, bicycle, biker, bikers and shorts jeans shirt
jeans are all close to each other. Colours, on the other hand, are
clustered in our embeddings while they are more scattered in
Numberbatch. These observations give some indications of the
difference between the three word-embedding and the possible
patterns they use in order to capture meaningful relations.

6.2.3 Flickr30k Zero-Shot Evaluation Analysis

In Section 5.1.5 an attempt was made to use the Flickr30k
dataset to gain a better understanding of the relationships
that were being learned in the cross-modal embedding space
obtained in Experiment I. For each of the 1000 images that
were selected, the image-sentence similarity was calculated
and ordered in descending order. On average the correct
image-sentence pair occurred at position 467.785 for the ob-
tained gcn variant of our language embeddings. As this is
only marginally better than random (500), it was not expected
that further knowledge could be obtained analysing the perfor-
mance between different POS-tags.

In Figure 6.8 one can observe the distribution of cosine-
distance scores on the word (a) and sentence level (b) for
only corresponding sentence-image pairs. In Figure 6.8(c) the
frequency is shown that the rank of the corresponding image-
sentence pair was observed at for all 1000 sentences (467.785

92



175 150 125 100 75 50 25 0

y

10
0

50
0

50
10

0
x

the bikers
came

around

corner

very

fast

and it
wasa

tight

race
with

blue

biker

in

lead

large

group

of
youths

sitting

socializing

on

cement

wall

graffiti

covered

girl

greenpink

outfit

attempts

to

climb

made
for

kidslittle

kid

shoes

is pushing

toy baby

stroller

man

performing

an

aerial

jump

bicycle

front

mountain

pine
trees

stands

concrete ledge

casts

his

fishing

pole

into

water

below

young

boy

shirt

multicolor
shorts

jumps

upout

arms

spread

either

side

five
people

bikes

traffic

watchingfrom

road

woman

yellow

button

jeans

making

beautiful
pottery

etchings

one

her

works

art

furry

beige

dog

playing

murky

river

t-SNE example: Glove

Figure 6.5: Glove TSN-e results. First with PCA
the dimensionality was reduced to 10, after which
20k words were used to learn the 2D projections
using TSN-e. The same vocabulary was visualized
for Figure 6.5, 6.6 and 6.7.
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t-SNE example: our embeddings

Figure 6.6: Our embeddings gcn-hops-2_20-big
TSN-e results. First with PCA the dimensional-
ity was reduced to 10, after which 20k words were
used to learn the 2D projections using TSN-e. The
same vocabulary was visualized for Figure 6.5, 6.6
and 6.7.

for nouns, 466.285 average). As explained, the image-sentence
similarity was calculated by averaging the cosine similarity on
the image-word level for each image. Either all words were
included or only nouns, however, no significant differences
were observed between the two. A visual example of the actual
dataset combined with the POS-tags and cosine distance scores
between the image-word pairs is shown in Figure 6.9. One can
observe that the used NLTK POS-tagger makes mistakes and
gives for example the N (noun) tag to adjectives (furry, beige,
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Figure 6.7: Numberbatch TSN-e results. First with
PCA the dimensionality was reduced to 10, after
which 20k words were used to learn the 2D pro-
jections using TSN-e. The same vocabulary was
visualized for Figure 6.5, 6.6 and 6.7.
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(b) Distribution of the cosine distances be-
tween the corresponding image-sentence
pairs only. Obtained by averaging the
image-word cosine distance for each image-
description.
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Figure 6.8: Distributions of similarity scores be-
tween our gcn language embeddings and extracted
visual feature vectors (a) and (b). On the right (c),
the ranked image-sentence pairs based on similarity.
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the furry beige dog is playing in the murky river water
DET N N N VERB ADP DET N N N
1.02 0.59 0.83 0.94 1.06 0.92 1.10 1.02 1.00 1.07 1.03

Figure 6.9: Illustration of the cosine distance that
the cross-modal embedding space obtained in Ex-
periment I gives to the 3411595210.jpg image of
the Flickr30k dataset to each individual word. An
average cosine distance of 0.96 is obtained on the
sentence-level (by averaging). The distribution of
all image and sentence similarity scores on the
word- and sentence-level is shown in Figure 6.8a
and b respectively. This method was used to ob-
tain more qualitative knowledge of the relationships
that were easily accessible in the cross-modal em-
bedding space in Experiment I by comparing the
different POS-tags with their similarity between
(non)corresponding image-word pairs. Due to
the inability to rank corresponding image-sentence
pairs higher than non-corresponding pairs (see Fig-
ure 6.8c), any further analysis was not carried out.

6.3 III - TALL with Sentence Embedding
Replacements

In Table 6.3 the results are shown for the TALL-task as intro-
duced by Gao et al. (2017). The results of the original paper are
reproduced from their implementation available on Github and
compared with our own language embeddings. As the R@10

scores were not reported in the original paper, these scores
are listed as n.a., for completeness these were included for our
embeddings and reproduction of their work. There are five
different result-groups separated by a horizontal line in Table
6.3 representing a; random baseline, CTRL reproduction and
the findings as reported by Gao et al. (2017), our sentence-level
Infersent embeddings (GNB-infersent, Section 5.3.2), word-
level embedding quality comparison, and lastly the multi-hot
word-level sentence embedding results (5.3.6). An underscore
indicates the local best performance score whereas in bold the
global best is marked.

One can observe that on the sentence-level our approach
consistently scored slightly lower than their reported findings
in their paper. Our reproduction of their paper also scores
lower than their reported findings. A possible explanation
for this is that we report the final scores obtained after 20000

iterations, the default setting of their model. With early stop-
ping the results were similar to their reported score but were
difficult to justify, as early stopping over multiple runs also
sometimes lead to even worse results. Therefore we did not
use early-stopping.
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Figure 6.10: Comparison of TALL-task performance
of word-embedding methods and zero-shot per-
formance as measured in Experiment I. Used to
observe the relationships between the zero-shot per-
formance and the TALL-task performance. Values
are corresponding with the ones observed Table 6.3
and Figure 6.3 respectively.As the Infersent algorithm could change the feature repre-
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sentation of the words and break-up certain relations, a com-
parison of the embeddings was also made on the word-level.
In Table 6.3 one can observe that the language embeddings
obtained with the InferSent algorithm outperforms any of the
sentence embeddings obtained by word-embedding averag-
ing. In addition, Word2Vec outperforms the other language-
embedding methods obtained on the word-level including our
own except when the IoU is just 0.1 for R@5 and R@10. Lastly,
in Figure 6.10 one can observe how the zero-shot performance
is related to the performance obtained in the TALL-task.

Method R@1 R@5 R@10

IoU→ 0.5 0.3 0.1 0.5 0.3 0.1 0.5 0.3 0.1

Random (baseline) 0.83 1.81 3.28 3.57 7.03 15.07 n.a n.a n.a

CTRL (reg-np) reproduction 12.17 18.07 23.73 24.88 35.17 47.27 29.88 44.23 60.40
CTRL (reg-np) paper 13.30 18.32 24.32 25.42 36.69 48.73 n.a n.a n.a

GNB-infersent 12.07 16.73 23.10 24.66 33.75 47.20 28.88 42.27 60.05

glove 11.63 15.53 19.67 23.15 32.11 43.69 28.12 40.68 56.33

word2vec 12.07 16.73 21.82 24.08 33.87 45.82 28.94 41.86 60.23

lexvec 1.42 3.45 4.89 5.19 11.41 22.02 8.87 21.01 36.59

numberbatch 9.28 12.29 18.30 22.75 29.83 44.35 22.75 29.83 44.35

GNB-mean 11.17 15.01 20.06 22.48 31.86 45.06 27.90 41.02 57.48

GNB-GC 10.65 14.91 20.21 21.72 31.08 44.11 27.33 39.92 58.56

GNB-GC-oov-matching 10.97 15.23 19.99 21.72 32.84 47.20 27.75 41.61 61.28

one-hot-encoding stopwords 6.89 8.74 12.54 15.77 22.51 34.45 21.85 32.40 50.94

one-hot-encoding no stopwords 6.27 8.74 12.37 15.14 23.02 31.79 20.92 31.97 47.17

one-hot-encoding stopwords normalized 8.16 11.07 15.16 17.14 25.47 37.96 22.95 35.39 51.31

one-hot-encoding no stopwords normalized 6.29 8.13 10.85 13.81 21.45 33.26 19.40 30.81 46.78

Table 6.3: TALL-task performance. Listing the origi-
nal performance of Gao et al. (2017), our reproduced
results, and the performance obtained by substi-
tuting their performance with our own sentence
language replacement methods. Infersent creates
sentence-level embeddings of size 4800, whereas
all others create sentence-embeddings using simple
word-level averages of dimensionality 300.
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7 Discussion
The research questions that were formulated in the introduction
are now attempted to be answered. These questions are placed
back in their original context and the hypotheses that were
formulated in the Introduction (1) are restated. Thereafter, an
interpretation is given to the obtained results and concerns
are raised about the methodology whenever it was deemed
necessary.

7.1 Restating Hypothesis
In the first hypothesis (H1) we formalised our expectations
that more structured language embeddings would be benefi-
cial for event-localisation given natural language text due to
the increased ability to transfer knowledge from the seen to
unseen vocabulary. We argued that the TALL-task is close to a
GZSL-task setting, which emphasises the need of transferring
knowledge between seen and unseen training-examples. In
particular, the large intra-class variety within the visual domain
and a large vocabulary-size in the language domain with many
complex relationships between words contribute to this need.

In the second hypothesis (H2) we formalised our expecta-
tions that language embeddings that contain more visually
centred relationships can be better aligned with visual features.
We expected that because ConceptNet is centred around ob-
jects and the relations they have to other objects and events,
this KB could potentially be used to obtain improved language-
embeddings for event-localisation due to being more centred
around relations in language that have clear visual correspon-
dences (e.g. objects). This is in contrast to the datasets that
current distributional language embedding methods use, e.g.
Wikipedia, which are less centred around visual-descriptions
but more on events described in a historical context.

We designed a number of experiments in order to test
whether our approach (1) incorporated our hypothesis and
(2) whether this indeed lead to the increase in performance we
expected. As our research questions and hypothesis are closely
tied together, whether (1) and (2) were indeed observed are
discussed jointly in the sections where we attempt to answer
RQ1 (7.2.1), RQ2 (7.2.3) and RQ3 (7.2.5). For each of the RQs
we also discuss whether the methodology that was used to
answer this particular research question was considered sound
or whether unforeseen problems were observed that could
invalidate our obtained results. For RQ1, RQ2 and RQ3 this is
discussed in Section 7.2.2, 7.2.4 and 7.2.6 respectively.
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7.2 Relations between Results & RQs
7.2.1 RQ1 - Improved Alignment?

The objective of this research question was to examine whether
improved alignment between visual features and language
features could be obtained for zero-shot use-cases by creat-
ing a more structured representation of language. In specific,
whether in accordance with our hypothesis H1 (1.5) adding re-
lational knowledge to distributional semantic language embed-
dings leads to improved performance in a GZSL task-setting.
It was expected that when relational knowledge was added to
distributional language embeddings, the added structure could
hypothetically improve the transfer of knowledge between seen
and unseen visual-textual correspondences.

To answer this research question, we first obtained our own
language embeddings in Experiment II using a novel approach
that incorporated our hypothesis (H1 & H2 in Section 1.5) and
designed in Experiment I a zero-shot evaluation benchmark
that tested the extent a variety of language embeddings could
be aligned with visual features including unseen textual-visual
correspondences. In RQ3 we further explore whether there
is an actual correlation between the zero-shot performance
scores obtained in Experiment I and the actual TALL-task
performance scores, testing our believes whether the TALL-
task is actually close to a GZSL problem. In Experiment I we
also explored the possibilities to use the obtained cross-modal
embedding space in the zero-shot evaluation setup to perform
a more qualitative analysis using the Flickr30k dataset. As
the results were insignificant and already discussed in Section
6.2.3, this is not further discussed here.

The results of Experiment I (6.1) indicated that approaches
that relied upon the combination of relational knowledge with
distributional semantics obtained significantly higher zero-
shot performance in our evaluation-benchmark (Figure 6.1 and
6.2). The language-embeddings obtained using our approach
(9.36%) and Numberbatch (7.90%), which both rely on the
structure of ConceptNet, obtained the highest performance
on all test-sets including the most difficult narrow zero-shot
test-set (3rd best was Glove with 6.57%). This was in line with
our expectations that were formulated in hypothesis H1. In ad-
dition, Numberbatch and the language embeddings obtained
using our approach outperformed many of the distributional
word-embedding approaches on the intrinsic evaluation bench-
marks. This indicates that relying upon relational knowledge
and in specific ConceptNet can result in improved general
language embedding quality.

The average rank of the corresponding visual-textual fea-
tures when ranked amongst non-corresponding ones, were
shown in Figure 6.1 and 6.2 for a variety of language-embedding
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methods. The results indicate that our model using the gcn
aggregator with hops OOV replacement performs either better
or close to Numberbatch and clearly outperforms all other
language embedding methods. Considering that the correct
corresponding visual-textual feature pairs were ranked on
average 698 out of all 5579 synsets, the performance in this
experiment was considered mediocre. This indicates that align-
ing visual and textual features remains difficult even in this
simplified setup. Taking the lowest average rank obtained
using the two different loss-functions, Glove was closest to
our approaches (+20.3%), compared to LexVec (+49.86%) and
Word2Vec (+85.67%).

The zero-shot performance calculated as the mAP@10 (Fig-
ure 6.3 and 6.4) showed similar relationships between the
different language-embeddings as using the mAR evaluation
metric. Interestingly, the mAP@10 was relatively high com-
pared to the mAR with our language embeddings obtaining
a score of 9.36%. If similar performance was observed at all
ranks, a mAR of 106.84 would be observed (100/9.36*10) which
is significantly lower than the observed 698. This indicates that
there is a large difference in the difficulty in which particular
synsets could be ranked. Therefore additional testing would
be beneficial to investigate what makes certain visual-textual
correspondences more difficult to match when compared to
others.

To conclude our findings regarding RQ1, we observed that
the inclusion of relational knowledge in language embeddings
resulted in increased zero-shot performance. In the next sec-
tion, we highlight possible drawbacks of our employed method-
ology.

7.2.2 RQ1 - Remarks about Methodology

There are a few questions that can be raised about the integrity
of the used methodology to answer RQ1. First, we decided
to conduct the experiments within the image- rather than
the video domain. While we argued that this gave us an
advantage by being able to use the ImageNet-hierarchy with
a much higher variety of objects and lower the computational
cost of our conducted experiments, this does add the concern
whether our findings transfer to the video domain. When
working in the domain of videos, the recognition of specific
motion patterns become important for the classification and
localisation of events (Section 2.2.1). De Boer et al. (2017)
mention that for zero-shot video event retrieval the availability
of mid- and high-level events are contributing more to the
obtained performance than the low-level events which contain
only objects. Arguably localising mid and high-level events
goes beyond the simple recognition of objects, therefore the
question remains whether our results obtained using only
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object-classes actually generalise to the video domain.
Second, the observed zero-shot performance scores in Ex-

periment I could be unfairly biased towards the language
embeddings that relied upon ConceptNet as both ConceptNet
and the ImageNet hierarchy (which was used to obtain our
zero-shot evaluation benchmark) internally use the WordNet-
structure. This shared internal structure could enhance the
subsequent matching with visual features artificially. Concept-
Net was created by combinnig a variety of KBs, the question
therefore becomes how prominently ConceptNet features the
WordNet structure. In our experiments, we found that 99.92%
of the synsets in our ImageNet-based zero-shot dataset were
available in ConceptNet with a high average node-degree of
24.78. This gives some indications that the reliance upon Word-
Net is strong. Therefore it remains to be seen whether our
approach towards testing zero-shot performance is actually
reliable. However, as ConceptNet uses a selection of the most
popular and largest KBs to date, it is questionable whether this
problem could have been prevented.

Lastly, a question that should be posed is whether our ob-
tained word-embeddings were significantly different from the
node-feature representation obtained from Numberbatch. Hy-
pothetically, if in our approach no neighbourhood information
was aggregated, the node embeddings obtained by Graph-
SAGE would have been similar to the already SOTA Number-
batch embeddings. Therefore both a qualitative and quanti-
tative analysis was conducted to observe the (dis)similarities
between our obtained language embeddings and Numberbatch.
In the qualitative analysis, as seen in Figure 6.6 and 6.7, clear
differences between our embeddings and theirs is shown in the
TSNe plots. Probably the strongest argument that our obtained
language embeddings differ from Numberbatch are the signif-
icant performance differences obtained in the analogy-based
tasks of the intrinsic evaluation benchmarks while performing
comparable or better on categorisation and similarity-based
tasks. In addition, the cosine distance between the matching
vocabulary in our language-embeddings and Numberbatch
was plotted in Figure A1. Here one can observe that con-
cepts in our language embeddings with fewer neighbours in
ConceptNet have more similarity with Numberbatch (flatter
distribution) which is to be expected. However the mode of
the cosine distance distribution (Figure A1a) hovers around 1

which indicates that average cosine distance is not similar (0)
or dissimilar (2), but somewhere in the middle.

7.2.3 RQ2 - Zero-shot Dataset?

The objective in this research question was to obtain a zero-
shot dataset that was emphasising the wide-variety of possible
events that can be described in natural language text rather
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than focusing on correctly classifying fine-grained classes which
is frequently the objective in zero-shot evaluation datasets. To
answer to which degree this objective was accomplished, two
criteria of success were considered. First, whether the zero-shot
dataset was showing consistency in the sense that when input-
classes from the test-set had more similarity with the classes
in the training-set, a higher zero-shot performance score was
obtained. As this phenomenon is frequently described in the
literature (e.g. Deng (2012)) and the objective of zero-shot
datasets is to have a disjoint set of classes between the training-
and test-set, this was considered a decent measurement of
whether an appropriate class-selection technique was used for
the test-set. Second, whether the visual-features are coming
from a diverse domain which is also close to the vocabulary as
seen in natural language text.

To obtain a dataset in accordance with our two criteria of
success, the hierarchical structure of ImageNet was selected to
have more control over the dissimilarity of the classes in the
test-set, while the considerable topic diversity of the images
in the ImageNet dataset was expected to be in line with the
general nature of events in videos. The downsides of using this
dataset were already discussed in Section 7.2.2 and were re-
garding the different domain this dataset is situated in (images
in contrast to videos) which is directly related to the absence
of mid- or high-level events that can be observed in videos
by the (complex) interaction of objects through time. How-
ever, within the video domain and especially the domain of
event-localisation, datasets tend to be smaller and less diverse
(Section 2.2.2, Figure 2.5) with most datasets not containing a
hierarchy in which the events can be related making it difficult
to obtain a zero-shot dataset in accordance with our criteria for
success within the video domain.

With our ImageNet selection we created three test-datasets;
narrow, random and internal, with decreasing average distance
between the classes in the training-set and test-sets. In line with
our hypothesis we found that the hardest zero-shot dataset was
consistently narrow, after which random and internal followed
in order (Figure 6.1, 6.2,6.3 and 6.4). Therefore we considered
our dataset in accordance with the first criteria for success. The
diverse set of image-classes in ImageNet were also considered
to be in accordance with the wide variety of objects that could
be observed in videos.

7.2.4 RQ2 - Remarks about Methodology

Due to time constraints, the parameters that were selected for
the cross-modal embedding space obtained in Experiment I
were only fine-tuned on Glove after which the same parameter-
settings were applied to all language-embeddings. The prob-
lem with this approach is that some language embeddings
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could benefit from for example early-stopping or extra regu-
larisation to decrease the difference between the validation-set
and test-sets performance. However, our results show that
a better performance on the validation-set also resulted in a
higher performance on the three test-sets (Figure 6.1, 6.2, 6.3
and 6.4), this at least makes it unlikely that a significant perfor-
mance difference would be obtained by individually optimis-
ing the parameters for each individual language-embedding
method. However, the possibility can not be ruled out that
due to the specific parameter tuning on Glove, the obtained
results slightly favour Glove. This is only expected to fur-
ther strengthen our observation that Numberbatch and our
methods outperform Glove in Experiment I.

10

Hierarchy Most Populated Least Populated All
Method 2 H 3 H 500 1K 5K 500 1K 5K 20K
CONSE [15] 7.63 2.18 12.33 8.31 3.22 3.53 2.69 1.05 0.95
CMT [12] 2.88 0.67 5.10 3.04 1.04 1.87 1.08 0.33 0.29
LATEM [11] 5.45 1.32 10.81 6.63 1.90 4.53 2.74 0.76 0.50
ALE [30] 5.38 1.32 10.40 6.77 2.00 4.27 2.85 0.79 0.50
DEVISE [7] 5.25 1.29 10.36 6.68 1.94 4.23 2.86 0.78 0.49
SJE [9] 5.31 1.33 9.88 6.53 1.99 4.93 2.93 0.78 0.52
ESZSL [10] 6.35 1.51 11.91 7.69 2.34 4.50 3.23 0.94 0.62
SYNC [14] 9.26 2.29 15.83 10.75 3.42 5.83 3.52 1.26 0.96
SAE [33] 4.89 1.26 9.96 6.57 2.09 2.50 2.17 0.72 0.56
GFZSL [41] 1.45 −− 2.01 1.35 −− 1.40 1.11 0.13 −−

TABLE 5: ImageNet with different splits: 2/3 H = classes with 2/3 hops away from the Ytr of ImageNet1K, 500/1K/5K most populated
classes, 500/1K/5K least populated classes, All = The remaining 20K categories of ImageNet (Yts). We measure top-1 accuracy in %.

Fig. 5: Zero-Shot Learning experiments on Imagenet, measuring Top-1, Top-5 and Top-10 accuracy. 2/3 H = classes with 2/3 hops away
from ImageNet1K training classes (Ytr), M500/M1K/M5K denote 500, 1K and 5K most populated classes, L500/L1K/L5K denote
500, 1K and 5K least populated classes, All = The remaining 20K categories of ImageNet.

and AWA2 is within 2%. On the other hand, the same consistency
is not observed for DEVISE [7], SJE [9] and SYNC [14]. For
instance, SJE [9] obtains 65.6% on AWA1 and 61.9% on AWA2.
After careful examination, we noticed that SJE [9] selects different
hyperparameters for AWA1 and AWA2, which results in different
performance on those two datasets. In our opinion, this does not
indicate a possible dataset artifact, however shows that zero-shot
learning is sensitive to parameter setting.

Commonly, a model is trained and evaluated on the same
dataset. Across dataset experiments are not easy as different
datasets do not share the same attributes. However, AWA1 and
AWA2 share both classes and attributes. In order to verify that
AWA2 is a good replacement for AWA1, we conduct across-
dataset evaluation for 12 methods, i.e. [1], [13], [11], [9], [10],
[14], [12], [15], [7], [30], [33]. In particular, with our Proposed
Splits (PS), we train one model on the training set of AWA1 and
evaluate it on the test set of AWA2 in the zero-shot learning setting,
and vice versa. From Table. 4, we observe that all the models
trained on AWA1 generalize well to AWA2 and vice versa.

In addition, we notice that the cross-dataset result is dependent
on the training set. For instance, for all the methods, if we
fix training set to be from AWA1, the results on the test set
of AWA1 and AWA2 are close. To verify this hypothesis, we
performed a paired t-test which determines if the mean difference
between paired results is significantly higher than zero. To that
end, we take the 24 pairs of results whose test sets are the same,
i.e. the results obtained with 12 methods on AWA1:AWA2 and
AWA2:AWA2 (2nd and 3rd column) as well as the results obtained
with 12 methods on AWA1:AWA1 and AWA2:AWA1 (1st and

4th column). The paired t-test rejects the null hypothesis with p-
value= 0.007, indicating that the results are significantly different
if the test set is the same but the training set is different. As a
conclusion, the training set is an important indicator of the final
result and the two datasets, i.e. AWA1 and AWA2 are sufficiently
similar. Therefore, our cross-dataset experimental results indicate
that AWA2 is a good replacement for AWA1.

Zero-Shot Learning Results on ImageNet. ImageNet scales the
methods to a truly large-scale setting, thus these experiments
provide further insights on how to tackle the zero-shot learning
problem from the practical point of view. Here, we evaluate 10
methods, i.e. [11], [9], [10], [14], [12], [15], [7], [30], [33], [41].
We exclude DAP and IAP as attributes are not available for all
ImageNet classes as well as SSE [13] due to scalability issues
of the public implementation of the method. Table 5 shows that
the best performing method is SYNC [14] which may either
indicate that it performs well in large-scale setting or it can learn
under uncertainty due to usage of Word2Vec instead of attributes.
Another possibility is Word2Vec may be tuned for SYNC as it
is provided by the same authors. However, we refrain to make
a strong claim as this would requires a full evaluation on class
embeddings which is out of the scope of this paper. On the
other hand, GFZSL [41] which is the best performing model for
attribute datasets perform poorly on ImageNet which may indicate
that generative models require a strong class embedding space
such as attributes to perform well on ZSL task. Note that due to
the computational issues, we were not able to obtain results for
GFZSL for 3H, M5K, L5K and All 20K classes.

More detailed observations are as follows. The second highest

Figure 7.1: Top 10 accuracy of zero-shot perfor-
mance with different synset-selection strategy and
models. Used as an illustration for the large differ-
ences in model-performance as result of the synset-
selection strategy. Figure reproduced from Xian
et al. (2017).

After the creation of our zero-shot dataset, Xian et al. (2017)
publicly released a consistent zero-shot evaluation benchmark
using pre-defined splits and a special focus on selecting image-
classes in the test-set that were disjoint from the ones in the
training-set. Xian et al. showed the effect of different synset-
selection strategies on the zero-shot performance, see Figure
7.1. Using synsets from 2 hops away (2H) starting from the
training-set synsets resulted in significantly higher zero-shot
performance than three hops (3H). In addition, synsets that
contained fewer images per synset (L500, L1K, L5K) showed
worse performance than the ones with more (M500, M1K,
M5K). Therefore, an improvement that could have been made
in our task-setup is to use their proposed train- and test-split
dataset to directly compare our results with other methods,
but more importantly to include synsets that have a variety
of images per synset as these synsets were found to be more
difficult to classify correctly1. In our approach we did not

1 Xian et al. (2017)

select synsets based on this property and therefore we do not
know whether this has a significant impact on the obtained
results. However, it was not expected that this specific design
decision was introducing bias in the comparison between the
different embedding methods as the same test-sets were used
for all of them.

7.2.5 RQ3 - TALL-task Performance?

In this research question, the objective was to test whether
the properties of language embeddings that we hypothesised
(H1, H2) to be beneficial for obtaining high performance in
the TALL-task actually resulted in high performance. For this,
we used the evaluation setup and model-architecture of Gao
et al. (2017) to obtain a performance metric on the TALL-task by
substituting their representation of language with the language
embeddings used in Experiment I.

In Figure 6.10 one can observe the correlation between the
zero-shot performance obtained in Experiment I and the perfor-
mance obtained in the TALL-task in Experiment III. We found
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that Numberbatch and our embeddings (gcn_hops_2_20) per-
formed worse on the TALL-task than many of the distributional
embedding methods and therefore a negative correlation was
observed between the obtained zero-shot performance and
TALL-task performance. This was in contrast to our hypothesis
that improved zero-shot performance would be beneficial to the
TALL-task. Therefore the answer to this research question is
that a higher zero-shot performance as obtained in Experiment
I is not indicative of improved performance on the task of event-
localisation given free-form text queries. However, it should be
noted that these results are obtained using the evaluation-setup
and model used by Gao et al. (2017). Therefore in Section 5.3.4
and 5.3.5 we analysed in more depth the characteristics of the
datasets that were used to evaluate the TALL-task (TACoS and
Charades-STA) and in Section 5.3.6 we conducted an experi-
ment to answer whether for this evaluation-setting the transfer
of knowledge between known and unknown vocabulary is
actually important. As the transfer of knowledge between the
train- and test-set is a fundamental requirement in a zero-shot
task-setting on which our method is based, this was deemed
a crucial step in finding out why a higher zero-shot perfor-
mance in Experiment I did not transfer to Experiment III. In
addition, Gao et al. (2017) introduced the TALL-task as a re-
sponse to the oversimplification of language in most current
event-recognition approaches in which frequently language is
represented as a one-hot encoding of event-classes. In this task-
setup, there is no transfer of knowledge within the language
domain as the classes are entirely disjoint. Therefore arguably
the most significant difference between representing language
as a one-hot-encoding of event-classes or language-embeddings
is precisely the ability to transfer knowledge between words/-
classes.

The TACoS and Charades-STA datasets used for training
contained 98.11% and 98.87% overlap in vocabulary between
their test-sets (Section 5.3.4 and 5.3.5). In addition a small
vocabulary size was observed of only 1556 and 1150 words
respectively (Table 5.10 and 5.12). These findings question
whether given these datasets the transfer of knowledge be-
tween words or sentences is actually required. In Table 6.3 one
can observe that the differences between a one-hot encoding
of words that completely ignores knowledge transfer from
the train- to test-set vocabulary, is still performing relatively
close to the performance of distributional word-embeddings
(Table 6.3, e.g. 17.14 compared to 24.08 for R@5 IoU 0.5). This
indicates that knowledge transfer is not particularly important
for high performance given this evaluation-setup. This could
explain why no clear pattern was found between zero-shot
performance and TALL-task performance (Figure 6.10), but
remains an open question. At the very least an almost com-
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pletely overlapping test- and training-set vocabulary was not
deemed realistic. Therefore we conclude that additional testing
is required by using a different dataset with a more diverse
vocabulary.

Lastly, we obtained SOTA on 5 of the 17 intrinsic evalua-
tion benchmarks and performed second on 7 (Table 6.2) of
the ten different popular language embeddings tested. This
demonstrates that our method towards obtaining language
embeddings succeeds in obtaining general-quality language
embeddings.

7.2.6 RQ3 - Remarks about Methodology

Arguably to definitively answer RQ3 it is required to test how
the different language embedding methods perform under
a variety of fundamentally different model architectures de-
signed for the TALL-task. In this work, we solely relied upon
the approach of Gao et al. (2017) who introduced the TALL-
task and therefore there were no previous methods to compare
it to. Ideally, in the future a more comprehensive overview
could be created to show how the performance of the differ-
ent language embedding methods differ under a variety of
different modelling choices.
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8 Conclusion
In this work, a novel approach was taken towards combining
relational knowledge with distributional semantics, in order to
obtain improved language embeddings specifically for the task
of event-localisation given free-form text queries; the TALL task.
Language embeddings obtained by combining both relational
knowledge with distributional semantics while emphasising
visually-centred relations between words, were hypothesised to
improve the alignment with visual-features for this particular
task. We argued that the TALL-task is best formalised as
a Generalised Zero-shot Learning problem due to the large
intra-class variety of images and vocabulary-size within the
textual domain, combined with only limited visual-textual
correspondences in current datasets to combine the two.

By applying the graph convolution algorithm GraphSAGE
on the knowledge base ConceptNet with added distributional
node-embedding features, we obtained our own language
embeddings in accordance with our hypothesis. The rela-
tional knowledge in ConceptNet was expected to lead to
more structured language-embeddings and benefit the align-
ment with visual-features. Whether this indeed leads to im-
proved zero-shot performance was tested on our own zero-
shot evaluation-benchmark that emphasised the general na-
ture of events. We observed that language embeddings that
featured relational knowledge obtained significantly higher
zero-shot performance. However, as both ConceptNet and our
evaluation-benchmark relied upon the structure of WordNet, it
remains debatable whether this evaluation setup is fair.

SOTA performance was obtained on five popular intrinsic
evaluation-benchmarks with competitive results on most others.
However, no performance gains were observed on the TALL
task using the evaluation-benchmark and model-setup of Gao
et al. (2017). We show that under this evaluation-setup, high
performance could still be obtained using a multi-hot represen-
tation of words due to the small vocabulary-size and roughly
98% overlap between the test- and training-set vocabulary. As
this indicates that knowledge transfer between the training-
and test-set vocabulary is not required for decent performance,
we argue that this evaluation-setup is to a large extent artificial
and suggest that more testing is needed on a more diverse
dataset to definitively answer whether our obtained language
embeddings improve performance on the TALL-task. Nonethe-
less, we believe that our results show that our methodology is
successful in obtaining general purpose language embeddings
with many possible extensions for future improvements.
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8.1 Future Work
More research could be conducted towards further improving
the language embeddings obtained using our approach on
intrinsic evaluation benchmarks. In specific, the large amount
of OOV words caused by the mismatch between the vocabulary
of ConceptNet and popular DSM methods could be improved
upon. In the work of Numberbatch already a solution was
proposed towards this challenge1. Another method to improve 1 Speer et al. (2017)

the embeddings obtained using our approach is to improve the
modelling capabilities of GraphSAGE. Recently, Schlichtkrull
et al. (2017) showed that edge direction and relationship type
could be taken into account using graph convolutions. It can
be expected that significant performance gains can be obtained
mainly on the analogy tasks in intrinsic evaluation benchmarks
once these properties can also be added to the unsupervised
version of GraphSAGE.

The combination of fast training times of GCNs, their ability
to be trained on CPU rather than GPU without significantly
increased training-times and the self-consistency loss-function
of unsupervised GCNs approaches, could potentially be ex-
ploited in an attempt to learn the representation of language
and vision jointly. Xu et al. (2017) stress that one of the major
drawbacks of current approaches in event-localisation is that
the representations of vision and language are currently fixed
by extracting features from networks trained on a different
task. With current DSM methods, learning a representation of
language is a time-intensive task and requires large quantities
of data. This arguably makes it difficult to experiment with
different model-architectures to learn the representation of lan-
guage and vision jointly. Now that we showed that high-quality
word-embeddings could be obtained using GraphSAGE with
pre-trained distributional node-embedding features using the
unsupervised loss-function, further experiments can be con-
ducted to explore whether this can be combined with CNNs
in an end-to-end fashion. In our work, we relied upon match-
ing the vocabulary of ConceptNet and language-embedding
methods to learn a projection-network that matched the rep-
resentation of vision to that of language with both feature-
representations fixed. However, in future work also the poten-
tial can be explored to use this matching directly to optimise
both feature representations in an end-to-end fashion. For
example, the local-neighbourhood aggregation functions could
alter the weight of edges or edge-relations collectively by try-
ing to enforce that the node feature-representation is similar
to the visual representation and vice versa. At the same time,
the unsupervised loss-function could act as a regularisation
method to ensure that the structure of the graph remains intact
while also allowing for some flexibility.
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In this work, we also argued that the TACoS and Charades-
STA datasets are not suitable to evaluate the performance in the
TALL-task as almost no emphasis is placed upon relating the
seen to unseen vocabulary. Xu et al. (2016) provide a dataset
called MSR-VTT designed for video translating to text with
emphasis on creating a large-scale benchmark dataset. When
compared to the TACoS dataset, this dataset is expected to
contain more complex visual scenes and a larger number of
clip-sentence pairs with more variety between the alternative
sentence annotations per clip. This would presumably lead to
a more diverse vocabulary while in addition the performance
is tested in a much wider domain than is the case in the
TACoS or Charades-STA dataset. We recommend to repeat
the experiments on the TALL task using this dataset under a
variety of different training- and test-set splits due to the still
limited size of these datasets.

This work was carried out as part of an internship at QUVA-lab.

This work was carried out on the Dutch national e-infrastructure
with the support of SURF Cooperative.
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Figures

1.1 ConceptNet subgraph. Relations be-
tween concepts are shown by arrows and
are directional. The text above or below
the arrows demonstrate the relationship
type (e.g. UsedFor, AtLocation). Rela-
tional data from ConceptNet as shown
here can potentially be combined with
semantic node embedding features to
obtain better language embeddings for
event-localisation. Figure reproduced
from Speer and Havasi (2013). . . . . . . . 12

1.2 Comparison between popular language
embedding methods on intrinsic evalu-
ation benchmarks and bias-metrics. Fig-
ure reproduced from here. In intrinsic
evaluation tasks the similarity between
word-pairs is calculated based on human
judgment and is then compared to the
similarity these word-pairs have in the
language-embeddings as a measurement
for success. . . . . . . . . . . . . . . . . . . 13

2.1 The aim in the TALL-task is to find
the temporal boundaries of an event de-
scribed by a textual description T in
video V. (1) A cross-modal embedding
space is learned that should give high
activation for corresponding V and T. (2)
Thereafter a segment proposal network
is trained that learns based on the acti-
vation output of step (1) to predict the
temporal boundaries t_start and t_stop
of the event described by T. . . . . . . . . 19

2.2 A simplified overview of three identi-
fied problem-areas of event-localisation
in literature. Current approaches can be
roughly divided along these three dimen-
sions; Upper center: finding a suitable vi-
sual representation. Bottom left: the com-
putational efficiency in which the locali-
sation and classification of action occurs.
Bottom right: finding datasets suitable for
event-localisation in both size and variety
to accomplish this task. The axis are to
a certain extend dependend upon each
other. . . . . . . . . . . . . . . . . . . . . . 20

2.3 Popular architectures for learning visual
video representations that include mo-
tion. The models input differ in their
representation of time, e.g. on the frame-
level (a,c,d) vs. multiple frames (b,e),
without (a,b) or with additional motion
information (c,d,e). The model architec-
tures also differ in the moment motion
information is aggregated, e.g. late (c) vs
early fusion (a). Motion patterns can be
learned using 3D filters (b,d,e) or 2D ap-
proaches (a,c). Figure reproduced from
Carreira and Zisserman (2017). . . . . . . 22

2.4 A more in-depth illustration of the ap-
proaches towards aggregating temporal
information as seen in Figure 2.3. Single
Frame operates on the frame-level and ig-
nores the temporal aspect. Late Fusion
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merges the feature-representation right
before prediction. Early Fusion takes in n-
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representation of time and spatial infor-
mation that incorporates motion. Slow
Fusion decreases the temporal-depth in
stages while merging and comparing dif-
ferent sub-networks. Figure reproduced
from Karpathy et al. (2014). . . . . . . . . 23
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2.5 An overview of a selection of frequently
used datasets in CV with emphasis on
event recognition and detection. One can
observe significant differences in num-
ber of classes and samples per class de-
pending on the annotation-level (action,
object, sentence, attribute) and domain (im-
age, video). Videos can either be trimmed
or untrimmed, resulting in a classification
or localisation task. More on this shown
in Figure 2.6 and 2.9. . . . . . . . . . . . . 23

2.6 Properties of datasets. Colors are corre-
sponding with Figure 2.9. Used for fur-
ther illustrating how methods rely upon
different properties of datasets, including
the use of KT from the image to video
domain. . . . . . . . . . . . . . . . . . . . . 23

2.7 An example of how events can be seen as
a probability over objects. For example
the activity BenchPress frequently con-
tains the object bench-press and barbell.
Figure reproduced from Jain et al. (2015b). 24

2.8 Instead of relying upon knowledge trans-
fer by using class-to-attribute mappings,
Jain et al. (2015a) embed images and tex-
tual descriptions of objects in the same
space. Thereafter, they extend their zero-
shot approach towards localisation of ac-
tions in video with promising results. . . 25

2.9 General trends towards which datasets
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recognition/detection tasks. . . . . . . . . 27

2.10 Approximate size of the graphs used to
apply retrofitting on. Table reproduced
by Faruqui et al. (2014) . . . . . . . . . . . 35

3.1 The TALL module architecture; Cross-
modal Temporal Regression Localizer
(CTRL) architecture. CTRL contains four
modules: a visual encoder to extract
features for video clips, a sentence en-
coder to extract textual embeddings, a
multi-modal processing network to gen-
erate combined representations for the
visual and text domain, and a temporal
regression network to produce alignment
scores and location offsets. Figure and its
description reproduced from Gao et al.
(2017). . . . . . . . . . . . . . . . . . . . . . 37

3.2 Significant performance differences were
observed using either a learn-able sen-
tence encoder from the word-level or pre-
trained sentence-embeddings. Gao et al.
(2017) accredit the observed difference
due to the limited dataset size that make
the training on the word-level unfeasible.
Figure reproduced from Gao et al. (2017). 38

3.3 Illustrative schematic overview of the dif-
ferent terms used to extract positive train-
ing examples and IoU/nIoL calculations.
Figure reproduced from Gao et al. (2017) 38

3.4 Differences in performance obtained on
the SimLex intrinsic evaluation bench-
mark of NMT (yellow), GloVe_300 (blue)
and HPCA (green) language embeddings
under different percentages of the train-
ing data. On the vertical axis is the
performance on the task as discussed
in the work of Jastrzebski et al. (2017).
In supervised-versions of the benchmark
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the other language embeddings with in-
creased dataset sizes while in the unsu-
pervised version (right) this is not the
case. This is used as an argument for us-
ing a quantitative metric to denote the
ease of KT as an evaluation criterion
for language embeddings. Figure repro-
duced from Jastrzebski et al. (2017). . . . 42

3.5 An example of the method used by Jur-
gens et al. (2012) to construct the dataset
for the anology task; SemEval. Based on
the human-obtained answers the extend
to which the language embeddings are
consistent with these findings are used
as a measurement for success. . . . . . . . 43

3.6 Illustration of how the local neighbour-
hood of a node is sampled (1) after which
the node feature representation is aggre-
gated (2) and an unsupervised loss is ap-
plied in (3) that attempts to reconstruct
the local neighbourhood. Figure repro-
duced from Hamilton et al. (2017). . . . . 44

3.7 A near linear increase in computational
time is observed when the number of
edges increases with minimal difference
between GPU and CPU time. Figure re-
produced from Kipf and Welling (2016). . 45
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3.8 Illustration of a graph where all the
edges are of the same relation. From
a modeling perspective, Hamilton et al.
(2017) considers all edge-types equal and
without directionality. . . . . . . . . . . . 45

3.9 Illustration of a graph where there are
different edge-relations of which the di-
rectionality is important. Many graphs
belong into this category, including Con-
ceptNet and ImageNet. . . . . . . . . . . . 45

3.10 An overview of the training- and testing-
time of the different aggregator functions.
DW stand for DeepWalk which is one of
the benchmark methods used by Hamil-
ton et al. for comparison. Figure repro-
duced from Hamilton et al. (2017). . . . . 46

4.1 An example of how GraphSAGE can be
applied upon ConceptNet. W in yellow
represents word-embeddings, V repre-
sents a visual representation. In red are
the verbs and in green are the adjectives.
Arrows indicate either undirected (e.g. re-
lated_to) or directed edges (used_for). This
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there are visual and textual correspon-
dences whereas for others there is not.
This possibly allows to relate unrelated
to related concepts, ideal for zero-shot
use-cases. . . . . . . . . . . . . . . . . . . . 51

4.2 Frequency of edge-relationships in Con-
ceptNet. Based on the final selection of
concepts from ConceptNet. . . . . . . . . 53

4.3 A visual example of how the synsets in
ImageNet share visual correspondences
between more specific examples in the
ImageNet-hierarchy. The arrows indicate
is_a relationships with the more general
parent class being on the left-side. Figure
reproduced from Deng et al. (2009). . . . 57

5.1 An abstract example of how the nodes
were selected from the hierarchy of Ima-
geNet. The N stands for nodes that could
be selected in the narrow dataset. The R
stands for random nodes, while I stands
for internal nodes, whereas X represent
the nodes in the training-set. . . . . . . . 62

5.2 Example of an xml-entry of the ImageNet
tree structure. By nesting synset defini-
tions, the hierarchical structure of Ima-
geNet is obtained. . . . . . . . . . . . . . . 63

5.3 Illustration of the zero-shot evaluation
setup. On the left, the images (V) and
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Appendices
A Intrinsic Evaluation Methods Tables
A.1 Aggregator Function vs Feature Initialization

Categorization→ Categorization Tasks Similarity Tasks Anology Tasks

Evaluation → AP BLESS Battig ESSLI_1a ESSLI_2b ESSLI_2c MEN MTurk RG65 RW SimLex WS353 WS353R WS353S Google MSR SemEval mean ↓
gcn-average 0.669 0.855 0.448 0.886 0.700 0.622 0.790 0.584 0.853 0.537 0.533 0.693 0.618 0.760 0.029 0.064 0.151 0.576

gcn-hops 0.687 0.870 0.424 0.886 0.800 0.711 0.786 0.576 0.844 0.530 0.527 0.682 0.604 0.749 0.033 0.061 0.143 0.583
gcn-zeros 0.699 0.845 0.426 0.886 0.650 0.711 0.788 0.584 0.852 0.536 0.533 0.700 0.627 0.762 0.029 0.065 0.149 0.579

graphsage_maxpool-average 0.478 0.765 0.343 0.614 0.525 0.489 0.455 0.324 0.725 0.226 0.485 0.448 0.291 0.608 0.160 0.189 0.127 0.427

graphsage_maxpool-hops 0.455 0.705 0.309 0.636 0.475 0.511 0.514 0.339 0.683 0.177 0.441 0.459 0.334 0.615 0.127 0.143 0.106 0.414

graphsage_maxpool-zeros 0.493 0.725 0.330 0.591 0.550 0.467 0.453 0.327 0.728 0.224 0.483 0.457 0.308 0.614 0.164 0.190 0.122 0.425

graphsage_mean-average 0.607 0.820 0.399 0.886 0.625 0.556 0.660 0.478 0.836 0.365 0.506 0.544 0.399 0.696 0.199 0.252 0.159 0.529

graphsage_mean-hops 0.577 0.845 0.371 0.773 0.525 0.600 0.590 0.429 0.752 0.349 0.480 0.452 0.286 0.608 0.186 0.226 0.126 0.481

graphsage_mean-zeros 0.627 0.805 0.388 0.795 0.525 0.622 0.653 0.468 0.830 0.352 0.522 0.539 0.395 0.694 0.201 0.256 0.154 0.519

graphsage_meanpool-average 0.565 0.845 0.375 0.818 0.525 0.600 0.666 0.459 0.757 0.394 0.527 0.570 0.412 0.685 0.232 0.320 0.146 0.523

graphsage_meanpool-hops 0.572 0.750 0.388 0.705 0.650 0.644 0.712 0.518 0.718 0.490 0.573 0.599 0.452 0.699 0.185 0.233 0.138 0.531

graphsage_meanpool-zeros 0.562 0.805 0.375 0.727 0.525 0.578 0.660 0.478 0.749 0.400 0.557 0.580 0.417 0.693 0.231 0.318 0.146 0.518

graphsage_seq-average 0.515 0.675 0.340 0.636 0.600 0.511 0.602 0.482 0.805 0.426 0.545 0.590 0.481 0.674 0.170 0.283 0.149 0.499

graphsage_seq-hops 0.530 0.730 0.337 0.727 0.575 0.511 0.652 0.482 0.697 0.483 0.516 0.585 0.501 0.654 0.068 0.113 0.131 0.488

graphsage_seq-zeros 0.483 0.685 0.348 0.659 0.575 0.511 0.618 0.484 0.816 0.426 0.559 0.597 0.493 0.675 0.165 0.277 0.147 0.501

mean→ 0.568 0.782 0.373 0.748 0.588 0.576 0.640 0.467 0.776 0.394 0.519 0.566 0.441 0.679 0.145 0.199 0.140

Table A1: Results of the 17 individual intrinsic eval-
uation benchmark scores of which the average is
displayed in Figure 5.22 (b). As the cosine and con-
trastive loss-functions did not differ significantly,
only the results for the cosine similarity loss is
shown.

A.2 Random vs Non-Random Path

Comparison with random path set to false. Results can be
compared with Table A1 where the path is taken randomly.

Categorization→ Categorization Tasks Similarity Tasks Anology Tasks

Evaluation → AP BLESS Battig ESSLI_1a ESSLI_2b ESSLI_2c MEN MTurk RG65 RW SimLex WS353 WS353R WS353S Google MSR SemEval mean ↓
gcn-zeros 0.649 0.850 0.415 0.773 0.600 0.578 0.766 0.597 0.869 0.544 0.530 0.673 0.579 0.754 0.035 0.063 0.161 0.555
graphsage_maxpool-zeros 0.520 0.810 0.342 0.727 0.550 0.533 0.690 0.491 0.778 0.499 0.539 0.653 0.514 0.751 0.086 0.160 0.122 0.516

graphsage_mean-zeros 0.535 0.820 0.377 0.682 0.525 0.533 0.716 0.553 0.797 0.526 0.569 0.633 0.508 0.743 0.144 0.227 0.145 0.531

graphsage_meanpool-zeros 0.515 0.745 0.358 0.705 0.600 0.556 0.692 0.518 0.782 0.512 0.570 0.653 0.496 0.742 0.171 0.245 0.140 0.529

graphsage_seq-zeros 0.495 0.640 0.333 0.614 0.550 0.556 0.669 0.490 0.814 0.504 0.576 0.627 0.513 0.684 0.131 0.240 0.140 0.504

mean→ 0.543 0.773 0.365 0.700 0.565 0.551 0.706 0.530 0.808 0.517 0.557 0.648 0.522 0.735 0.113 0.187 0.141

Table A2: Results of the 17 individual intrinsic eval-
uation benchmark scores of which the average is
displayed in Figure 5.22 (a).

A.3 Hops Length vs Aggregate Function

Categorization→ Categorization Tasks Similarity Tasks Anology Tasks

Evaluation → AP BLESS Battig ESSLI_1a ESSLI_2b ESSLI_2c MEN MTurk RG65 RW SimLex WS353 WS353R WS353S Google MSR SemEval mean ↓
gcn-hops-1_10 0.684 0.850 0.425 0.886 0.725 0.667 0.790 0.607 0.852 0.538 0.534 0.684 0.591 0.788 0.038 0.059 0.159 0.581

gcn-hops-2_10 0.687 0.870 0.424 0.886 0.800 0.711 0.786 0.576 0.844 0.530 0.527 0.682 0.604 0.749 0.033 0.061 0.143 0.583

gcn-hops-3_10 0.699 0.880 0.420 0.864 0.875 0.733 0.798 0.625 0.885 0.526 0.511 0.681 0.570 0.771 0.039 0.055 0.167 0.594
gcn-hops-4_10 0.726 0.875 0.438 0.909 0.700 0.689 0.801 0.613 0.883 0.531 0.515 0.686 0.576 0.768 0.043 0.052 0.157 0.586

gcn-zeros-1_10 0.689 0.815 0.422 0.841 0.700 0.600 0.788 0.610 0.830 0.553 0.541 0.712 0.627 0.784 0.033 0.067 0.179 0.576

gcn-zeros-2_10 0.699 0.845 0.426 0.886 0.650 0.711 0.788 0.584 0.852 0.536 0.533 0.700 0.627 0.762 0.029 0.065 0.149 0.579

gcn-zeros-3_10 0.709 0.855 0.446 0.841 0.725 0.689 0.800 0.644 0.864 0.544 0.529 0.700 0.603 0.799 0.040 0.065 0.155 0.589

gcn-zeros-4_10 0.694 0.860 0.427 0.864 0.775 0.756 0.802 0.625 0.883 0.531 0.515 0.685 0.576 0.772 0.036 0.060 0.171 0.590

graphsage_mp-zeros-1_10 0.512 0.795 0.354 0.750 0.650 0.578 0.655 0.475 0.742 0.421 0.556 0.587 0.432 0.707 0.224 0.305 0.148 0.523

graphsage_mp-zeros-2_10 0.562 0.805 0.375 0.727 0.525 0.578 0.660 0.478 0.749 0.400 0.557 0.580 0.417 0.693 0.231 0.318 0.146 0.518

graphsage_mp-zeros-3_10 0.545 0.805 0.365 0.773 0.575 0.578 0.678 0.482 0.744 0.437 0.561 0.622 0.492 0.712 0.216 0.302 0.145 0.531

graphsage_mp-zeros-4_10 0.527 0.805 0.368 0.773 0.700 0.578 0.678 0.482 0.743 0.437 0.560 0.622 0.492 0.711 0.216 0.303 0.145 0.538

AP→ 0.644 0.838 0.407 0.833 0.700 0.656 0.752 0.567 0.823 0.499 0.537 0.662 0.551 0.751 0.098 0.143 0.155

Table A3: Results of the 17 individual intrinsic eval-
uation benchmark scores of which the average is
displayed in Figure 5.23 (b).
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A.4 Random Walks Count vs Agregator Function

Categorization→ Categorization Tasks Similarity Tasks Anology Tasks

Evaluation → AP BLESS Battig ESSLI_1a ESSLI_2b ESSLI_2c MEN MTurk RG65 RW SimLex WS353 WS353R WS353S Google MSR SemEval mean ↓
gcn-hops-2_10 0.687 0.870 0.424 0.886 0.800 0.711 0.786 0.576 0.844 0.530 0.527 0.682 0.604 0.749 0.033 0.061 0.143 0.583

gcn-hops-2_20 0.724 0.865 0.435 0.841 0.750 0.733 0.809 0.665 0.875 0.524 0.520 0.694 0.592 0.795 0.038 0.057 0.156 0.593
gcn-zeros-2_10 0.699 0.845 0.426 0.886 0.650 0.711 0.788 0.584 0.852 0.536 0.533 0.700 0.627 0.762 0.029 0.065 0.149 0.579

gcn-zeros-2_20 0.711 0.890 0.418 0.841 0.850 0.667 0.798 0.651 0.875 0.529 0.517 0.689 0.592 0.777 0.035 0.061 0.167 0.592

graphsage_mp-zeros-2_10 0.562 0.805 0.375 0.727 0.525 0.578 0.660 0.478 0.749 0.400 0.557 0.580 0.417 0.693 0.231 0.318 0.146 0.518

graphsage_mp-zeros-2_20 0.540 0.780 0.373 0.750 0.525 0.578 0.691 0.509 0.776 0.457 0.567 0.637 0.495 0.734 0.217 0.282 0.140 0.532

AP→ 0.654 0.843 0.408 0.822 0.683 0.663 0.755 0.577 0.829 0.496 0.537 0.664 0.554 0.751 0.097 0.141 0.150

Table A4: Results of the 17 individual intrinsic eval-
uation benchmark scores of which the average is
displayed in Figure 5.23 (a).

A.5 Dropout vs Aggregate Function

Categorization→ Categorization Tasks Similarity Tasks Anology Tasks

Evaluation → AP BLESS Battig ESSLI_1a ESSLI_2b ESSLI_2c MEN MTurk RG65 RW SimLex WS353 WS353R WS353S Google MSR SemEval mean ↓
gcn-hops-0.0 0.751 0.855 0.452 0.841 0.800 0.689 0.814 0.676 0.867 0.542 0.515 0.730 0.633 0.815 0.041 0.054 0.172 0.603

gcn-hops-0.25 0.751 0.875 0.440 0.864 0.725 0.711 0.810 0.666 0.864 0.523 0.489 0.690 0.578 0.794 0.037 0.055 0.155 0.590
gcn-hops-0.5 0.724 0.875 0.435 0.841 0.750 0.667 0.808 0.674 0.864 0.523 0.485 0.715 0.619 0.800 0.037 0.049 0.164 0.590

gcn-hops-0.75 0.701 0.865 0.410 0.841 0.750 0.667 0.798 0.644 0.824 0.489 0.438 0.656 0.564 0.769 0.035 0.042 0.157 0.568

graphsage_mp-zeros-0.0 0.575 0.770 0.385 0.682 0.650 0.511 0.683 0.509 0.724 0.469 0.571 0.624 0.472 0.718 0.200 0.281 0.150 0.528

graphsage_mp-zeros-0.25 0.555 0.750 0.392 0.682 0.650 0.533 0.682 0.509 0.720 0.469 0.570 0.625 0.473 0.718 0.200 0.285 0.148 0.527

graphsage_mp-zeros-0.5 0.535 0.735 0.374 0.750 0.650 0.578 0.678 0.509 0.717 0.465 0.570 0.623 0.469 0.715 0.202 0.289 0.148 0.530

graphsage_mp-zeros-0.75 0.552 0.770 0.363 0.750 0.600 0.556 0.668 0.505 0.714 0.456 0.569 0.616 0.455 0.710 0.205 0.298 0.148 0.526

AP→ 0.643 0.812 0.406 0.781 0.697 0.614 0.742 0.587 0.787 0.492 0.526 0.660 0.533 0.755 0.120 0.169 0.155

Table A5: Results of the 17 individual intrinsic eval-
uation benchmark scores of which the average is
displayed in Figure 5.24 (a).B Others

B.1 Sentences used for TSNe Visualization
’the bikers came around the corner very fast and it was a tight race with the blue biker in the lead’,

’a large group of youths sitting and socializing on a cement wall graffiti covered’,

’a girl in a green and pink outfit attempts to climb a wall made for kids’,

’a little kid in blue shoes is pushing a toy baby in a stroller’,

’a man is performing an aerial jump on a bicycle in front of a mountain covered with pine trees’,

’a man stands on a concrete ledge and casts his fishing pole into the water below’,

’a young boy in a blue shirt and multicolor shorts jumps up out

of the water with his arms spread out to either side’,

’five people on bikes in traffic with man watching from the side of the road’

’the furry beige dog is playing in the murky river water’

B.2 Word-Embeddings and References

Embedding Citation

hpca Lebret et al.
nmt Hill et al.
lexvec Salle et al.
glove Pennington et al.
rnnlm Luong et al.
pdc Sun et al.
numberbatch Speer et al.
word2vec Mikolov et al.
hdc Sun et al.
fast_text Bojanowski et al.

Table A6: Sources of the word-embedding methods
as listed in Table 6.2
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B.3 Cosine similarity Numberbatch and Our embeddings.
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(b) Separated by amount of neighbours.
Figure A1: Distribution of cosine-similarity scores
between corresponding vocabulary pairs of Num-
berbatch and our embeddings. Percentages each
label in the legend represents of the whole distribu-
tion (left): all (100%), 1-2 (17.77%), 3-4 (28.75%), 5-8
(29.23%), 9+ (24.25%)
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