Permutation Invariant Convolution
For Recognizing Long-range Activities

Noureldien Hussein Efstratios Gavves Arnold Smeulders

University of Amsterdam
Motivation
Motivation

High Jump
Motivation

High Jump

Temporal Pattern
Motivation

Temporal Pattern → CNN → Long Jump

Kernels
Motivation

Temporal Pattern

Repetition
Motivation

Temporal Pattern → CNN → Long Jump

Kernels
Motivation

Temporal Pattern → CNN → Long Jump

Permutation Invariant Kernels
Motivation

Temporal Pattern → CNN → Long Jump

Permutation Invariant Kernels
Permutation?
Motivation

--- Short-range Video (10 sec.) ---

run jump cross fall
Motivation

Long-range Video (5 min.)

\(v_1 \)

- fridge
- meat
- cucumber
- rice
- present
- vegetables
- wash
Motivation
Motivation

ν_1

ν_2

- fridge
- meat
- cucumber
- rice
- present
- vegetables
- wash
Motivation

v_1

v_2

v_3
Motivation

v_1

v_2

v_3

- fridge
- meat
- cucumber
- rice
- present
- vegetables
- wash
Method
Solution

--- Making Coffee ---

\[v_1 \]

\[v_2 \]

\[\vdots \]

\[v_n \]

- take cup
- pour coffee
- pour sugar
- spoon sugar
- pour milk
- stir coffee
Solution

Making Coffee

v_1 v_2 \vdots v_n

- take cup
- pour coffee
- pour sugar
- spoon sugar
- pour milk
- stir coffee

micro-level
Solution

--- Making Coffee ---

\[\nu_1 \]

\[\nu_2 \]

\[\vdots \]

\[\nu_n \]

- take cup
- pour coffee
- pour sugar
- spoon sugar
- pour milk
- stir coffee
Solution

Making Coffee

v_1

v_2

::

v_n

micro-level

macro-level

Preparing Coffee

take cup
pour coffee
pour sugar
spoon sugar
pour milk
stir coffee
\[s = K \otimes X_w^T \] (1)
$$s = K \otimes X_w^T \quad (1)$$

$$s' = \text{max}_{\text{row}}(s) \quad (2)$$
\begin{align*}
\mathbf{s} &= K \otimes X_w^T \quad (1) \\
\mathbf{s}' &= \max_{\text{row}}(s) \quad (2) \\
\alpha &= \sigma \left[f_\theta(s') \right] \quad (3)
\end{align*}
\[s = K \otimes X_w^T \] \hspace{1cm} (1)

\[s' = \max_{\text{row}}(s) \] \hspace{1cm} (2)

\[\alpha = \sigma [f_\theta (s')] \] \hspace{1cm} (3)

\[y = \alpha \odot V \] \hspace{1cm} (4)
\begin{align*}
 s &= K \otimes X_w^T \quad (1) \\
 s' &= \max_{\text{row}}(s) \quad (2) \\
 \alpha &= \sigma[f_\theta(s')] \quad (3) \\
 y &= \alpha \odot V \quad (4)
\end{align*}
\[s = K \otimes X_w^T \] (1)

\[s' = \max_{\text{row}}(s) \] (2)

\[\alpha = \sigma[f_\theta(s')] \] (3)

\[y = \alpha \odot V \] (4)
\[
\begin{align*}
 s &= K \otimes X^T_w \quad (1) \\
 s' &= \text{max}_\text{row}(s) \quad (2) \\
 \alpha &= \sigma [f_\theta(s')] \quad (3) \\
 y &= \alpha \odot V \quad (4)
\end{align*}
\]
\[s = K \otimes X_w^T \quad (1) \]
\[s' = \max_{\text{row}}(s) \quad (2) \]
\[\alpha = \sigma[f_\theta(s')] \quad (3) \]
\[y = \alpha \odot V \quad (4) \]
Solution

- Keys (K)
- Similarities (s)
- Max
- Values (V)
- X_w
- PIC Operation

$$y = \alpha \cdot f_{\theta} (s')$$
Solution

PIC Operation

PIC Layer
Solution

PIC Operation

PIC Layer
Predictions

Video Segment

\[S_1 \rightarrow \ldots \rightarrow S_T \]

\[\text{CNN} \]

\[x_1 \rightarrow \ldots \rightarrow x_T \]

\[\text{PIC} \]

\[\ldots \]

\[\text{PIC} \]

\[Z \rightarrow \text{Dense} \]

\[\text{Predictions} \]

\[X'_w \]

\[X'_w \rightarrow g_{\phi} \]

\[g_{\phi} \rightarrow K \]

\[K \rightarrow V \]

\[V \rightarrow X_w \]

\[X_w \rightarrow M \times C \]

\[M \times C \rightarrow h_{\psi} \]

\[h_{\psi} \rightarrow y \]

\[y \rightarrow 1 \times C \]

\[1 \times C \rightarrow y' \]

\[y' \rightarrow 1 \times C' \]

\[1 \times C' \rightarrow \text{PIC} \]

\[\text{PIC} \rightarrow \text{PIC Layer} \]

\[\text{CNN Classifier} \]
Experiments
Permutation Invariance

Uniform ν
Permutation Invariance

Uniform
Coarse Perm
Fine Perm
Permutation Invariance

<table>
<thead>
<tr>
<th>Baseline</th>
<th>Coarse</th>
<th>Uniform</th>
<th>Drop ↓</th>
<th>Fine</th>
<th>Uniform</th>
<th>Drop ↓</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timeception</td>
<td>84.6</td>
<td>82.2</td>
<td>2.4</td>
<td>84.6</td>
<td>81.9</td>
<td>2.7</td>
</tr>
<tr>
<td>PIC-Ordered</td>
<td>80.2</td>
<td>77.6</td>
<td>2.6</td>
<td>80.2</td>
<td>76.3</td>
<td>3.9</td>
</tr>
<tr>
<td>PIC</td>
<td>87.5</td>
<td>87.0</td>
<td>0.5</td>
<td>87.5</td>
<td>86.7</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Drop in Accuracy in Permuted Video Segments
Permutation Invariance

<table>
<thead>
<tr>
<th>Baseline</th>
<th>Coarse</th>
<th>Uniform</th>
<th>Drop ↓</th>
<th>Fine</th>
<th>Uniform</th>
<th>Drop ↓</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timeception</td>
<td>84.6</td>
<td>82.2</td>
<td>2.4</td>
<td>84.6</td>
<td>81.9</td>
<td>2.7</td>
</tr>
<tr>
<td>PIC-Ordered</td>
<td>80.2</td>
<td>77.6</td>
<td>2.6</td>
<td>80.2</td>
<td>76.3</td>
<td>3.9</td>
</tr>
<tr>
<td>PIC</td>
<td>87.5</td>
<td>87.0</td>
<td>0.5</td>
<td>87.5</td>
<td>86.7</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Drop in Accuracy in Permutated Video Segments
Permutation Invariance

<table>
<thead>
<tr>
<th>Baseline</th>
<th>Coarse</th>
<th>Uniform</th>
<th>Drop ↓</th>
<th>Fine</th>
<th>Uniform</th>
<th>Drop ↓</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timeception</td>
<td>84.6</td>
<td>82.2</td>
<td>2.4</td>
<td>84.6</td>
<td>81.9</td>
<td>2.7</td>
</tr>
<tr>
<td>PIC-Ordered</td>
<td>80.2</td>
<td>77.6</td>
<td>2.6</td>
<td>80.2</td>
<td>76.3</td>
<td>3.9</td>
</tr>
<tr>
<td>PIC</td>
<td>87.5</td>
<td>87.0</td>
<td>0.5</td>
<td>87.5</td>
<td>86.7</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Drop in Accuracy in Permuted Video Segments
Cascaded Layers

Making Coffee

ν_1

micro-level

macro-level
Cascaded Layers

<table>
<thead>
<tr>
<th>Baseline</th>
<th>Accuracy (%) @ Layer</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>ActionVlad</td>
<td>83.07</td>
<td>----</td>
</tr>
<tr>
<td>Non-local</td>
<td>82.29</td>
<td>83.33</td>
</tr>
<tr>
<td>PIC-Global</td>
<td>86.76</td>
<td>85.68</td>
</tr>
<tr>
<td>Timeception</td>
<td>83.85</td>
<td>84.90</td>
</tr>
<tr>
<td>PIC</td>
<td>86.25</td>
<td>87.72</td>
</tr>
</tbody>
</table>

Increase in Accuracy with Cascaded Layers
Cascaded Layers

<table>
<thead>
<tr>
<th>Baseline</th>
<th>Accuracy (%) @ Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ActionVlad</td>
<td>83.07</td>
</tr>
<tr>
<td>Non-local</td>
<td>82.29</td>
</tr>
<tr>
<td>PIC-Global</td>
<td>86.76</td>
</tr>
<tr>
<td>Timeception</td>
<td>83.85</td>
</tr>
<tr>
<td>PIC</td>
<td>86.25</td>
</tr>
</tbody>
</table>

Increase in Accuracy with Cascaded Layers
Cascaded Layers

<table>
<thead>
<tr>
<th>Baseline</th>
<th>Accuracy (%) @ Layer</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>ActionVlad</td>
<td>83.07</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Non-local</td>
<td>82.29</td>
<td>83.33</td>
<td>83.07</td>
<td>83.29</td>
</tr>
<tr>
<td>PIC-Global</td>
<td>86.76</td>
<td>85.68</td>
<td>85.68</td>
<td>85.42</td>
</tr>
<tr>
<td>Timeception</td>
<td>83.85</td>
<td>84.90</td>
<td>85.30</td>
<td>86.93</td>
</tr>
<tr>
<td>PIC</td>
<td>86.25</td>
<td>87.72</td>
<td>88.02</td>
<td>89.84</td>
</tr>
</tbody>
</table>

Increase in Accuracy with Cascaded Layers
Cascaded Layers

<table>
<thead>
<tr>
<th>Baseline</th>
<th>Accuracy (%) @ Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ActionVlad</td>
<td>83.07</td>
</tr>
<tr>
<td>Non-local</td>
<td>82.29</td>
</tr>
<tr>
<td>PIC-Global</td>
<td>86.76</td>
</tr>
<tr>
<td>Timeception</td>
<td>83.85</td>
</tr>
<tr>
<td>PIC</td>
<td>86.25</td>
</tr>
</tbody>
</table>

Increase in Accuracy with Cascaded Layers
Key-Value Pair Kernels

\[x_1 \quad x_T \quad x_N \]

\[X_W \rightarrow \text{Max} \rightarrow S' \rightarrow f_\theta(\alpha) \rightarrow \mathbf{y} \]

Keys (K) Similarities (S)

Values (V)
Cascaded Layers

<table>
<thead>
<tr>
<th>Baseline</th>
<th>Accuracy (%) @ Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Non-local</td>
<td>82.29</td>
</tr>
<tr>
<td>PIC-Inferred</td>
<td>82.55</td>
</tr>
<tr>
<td>PIC</td>
<td>86.27</td>
</tr>
</tbody>
</table>

Benefit of Shared v.s. Inferred Key-Value Kernels
Cascaded Layers

<table>
<thead>
<tr>
<th>Baseline</th>
<th>Accuracy (%) @ Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Non-local</td>
<td>82.29</td>
</tr>
<tr>
<td>PIC-Inferred</td>
<td>82.55</td>
</tr>
<tr>
<td>PIC</td>
<td>86.27</td>
</tr>
</tbody>
</table>

Benefit of Shared v.s. Inferred Key-Value Kernels
Cascaded Layers

<table>
<thead>
<tr>
<th>Baseline</th>
<th>Accuracy (%) @ Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Non-local</td>
<td>82.29</td>
</tr>
<tr>
<td>PIC-Inferred</td>
<td>82.55</td>
</tr>
<tr>
<td>PIC</td>
<td>86.27</td>
</tr>
</tbody>
</table>

Benefit of Shared v.s. Inferred Key-Value Kernels
Related Works

(a) Self-Attention
(b) Vector Aggregation
(c) Convolution
Related Works

<table>
<thead>
<tr>
<th>Method</th>
<th>Backbone</th>
<th>mAP (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SlowFast [47]</td>
<td>—</td>
<td>42.1</td>
</tr>
<tr>
<td>SlowFast-NL* [47]</td>
<td>—</td>
<td>42.5</td>
</tr>
<tr>
<td>3D CNN [6]</td>
<td>R101</td>
<td>35.5</td>
</tr>
<tr>
<td>3D CNN + TC [2]</td>
<td>R101</td>
<td>41.1</td>
</tr>
<tr>
<td>3D CNN + PIC</td>
<td>R101</td>
<td>42.7</td>
</tr>
<tr>
<td>3D CNN [7]</td>
<td>R101-NL</td>
<td>41.0</td>
</tr>
<tr>
<td>3D CNN + FB [7]</td>
<td>R101-NL</td>
<td>42.5</td>
</tr>
<tr>
<td>3D CNN + PIC</td>
<td>R101-NL</td>
<td>43.8</td>
</tr>
</tbody>
</table>

Breakfast

<table>
<thead>
<tr>
<th>Method</th>
<th>Backbone</th>
<th>Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D CNN</td>
<td>I3D</td>
<td>80.64</td>
</tr>
<tr>
<td>3D CNN + Vlad [46]</td>
<td>I3D</td>
<td>82.67</td>
</tr>
<tr>
<td>3D CNN + Nonlocal [6]</td>
<td>I3D</td>
<td>83.79</td>
</tr>
<tr>
<td>3D CNN + Timeception [2]</td>
<td>I3D</td>
<td>86.93</td>
</tr>
<tr>
<td>3D CNN + PIC</td>
<td>I3D</td>
<td>89.84</td>
</tr>
</tbody>
</table>

Charades

Multi-Thumos

<table>
<thead>
<tr>
<th>Method</th>
<th>Backbone</th>
<th>mAP (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D CNN</td>
<td>I3D</td>
<td>72.43</td>
</tr>
<tr>
<td>3D CNN + Timeception [2]</td>
<td>I3D</td>
<td>74.79</td>
</tr>
<tr>
<td>3D CNN + PIC</td>
<td>I3D</td>
<td>78.31</td>
</tr>
</tbody>
</table>
Performance Analysis

- Time (MS) vs. Layers
- Params (M) vs. Layers
- FLOPS (Mega) vs. Layers
- Accuracy (%) vs. Layers

- PIC
- Timeception
- Nonlocal
- Vlad
Performance Analysis
Performance Analysis

![Graphs showing performance metrics for different layers and models: Time, Params, FLOPS, and Accuracy.](image-url)
Performance Analysis

Graphs showing the performance analysis of different models:
- Time (MS) over Layers
- Params (M) over Layers
- FLOPS (Mega) over Layers
- Accuracy (%) over Layers

Models compared:
- PIC
- Timeception
- Nonlocal
- Vlad
Learned Concepts

- A01: Food Box (A05 Milk, A01 Cereals)
- A02: Pouring (A02 Coffee, A10 Tea)
- A07: Cutting (A07 Salad, A08 Sandwich)
Learned Concepts

A05
A01
Food Box (A05 Milk, A01 Cereals)

A02
A10
Pouring (A02 Coffee, A10 Tea)

A07
A08
Cutting (A07 Salad, A08 Sandwich)

Object-centric
Learned Concepts

Object-centric

- Food Box (A05 Milk, A01 Cereals)

Action-centric

- Pouring (A02 Coffee, A10 Tea)
- Cutting (A07 Salad, A08 Sandwich)
Learned Attention

Making Pancake (6 Minutes)
Learned Attention

Making Pancake (6 Minutes)
Thank You!