TIMECEPTION

FOR COMPLEX ACTION RECOGNITION

NOURELDIEN HUSSEIN, EFSTRATIOS GAVVES, ARNOLD SMEULDERS

PROBLEM

Complex actions of Charades are 3D scenes, compared to 5 sec of Kinetics.

EXTENT

One-action, comprising complex action, vary in their temporal extents.

DEPENDENCY

Temporal dependency, albeit weak, between the one-actions.

METHOD

TEMPORAL-ONLY CONV

Depthwise separable 1D conv to reduce complexity of 3D conv from $O(t \cdot c^3)$ to $O(t \cdot c)$.

MULTI-SCALE KERNELS

Different kernel sizes (k) or dilation rates (d) to account for varieties in temporal extents of one-actions.

EFFICIENT MODULAR LAYER

Grouped conv and concat+shuffle to reduce the computational cost of typical 3D conv.

RESULTS

DATASET: CHARADES

Improve over I3D, R3D, NL and GCN with much less parameters. Temporal footprint is 10-fold longer than our non-local. Computational cost is much less than related works.

LAYER EFFECTIVENESS

Timeception monotonically improves as the network goes deeper. The same result is confirmed when using different backbones, as ResNet and I3D.

MULTI-SCALE KERNELS

Convolutions with multi-scale kernels outperform their fixed-sized counterparts. Performance of different dilation rates (d) is comparable with that of different kernel sizes (k).

LONG-RANGE DEPENDENCY

For complex actions, Timeception does better than related methods in modeling the long-range temporal dependencies. But for some short-range, simple actions, it is outperformed.